/*xx CSE 344 Section 01 —— A Tour of SQLite sxkx/

/* How to start: open a terminal, then type the command:
sqlite3 database
where '"database" is the name of the database file you want to use.
WARNING: If you don't specify a database file, sqlite3 won't complain,
but your data will be lost!
*/

/* Useful commands for SQLite (not SQL commands!)

.help - lists other . commands

.headers on/off - show/hide column headers in query results

.mode - how to separate the columns in each row/tuple (for better
formatting)

.read 'filename.sql' - read and execute SQL code from the given file
.separator , - changes the separator for importing files to ,
.show - see how we have set our parameters

.import 'file.txt' Table - loads the file 'file.txt' to the table
Table, be careful to set the separator correctly!

.exit - exit from sqlite3

*/

/* The following are all SQL commands. They have to end with a ";" so
that SQLite can read them! x/

/*
Create tables
*/
—— SQLite ignores string length maximums (N in VARCHAR(N))
or fixed string lengths (N in CHAR(N)):
- http://www.sqlite.org/datatype3.html
— I've left them in so this code will work with other SQL
—— database management systems.
CREATE TABLE Class (
dept VARCHAR(6),
number INTEGER,
title VARCHAR(75),
PRIMARY KEY (dept, number)

);

—— Older versions of sqlite (including the one in Mac 0S 10.6,
unfortunately)
—— do not enforce FOREIGN KEY constraints. Newer versions are opt-in
—— at both compile time and runtime (with PRAGMA FOREIGN_KEYS = ON):
-— http://www.sqlite.org/foreignkeys.html
CREATE TABLE Teaches (

username VARCHAR(8),

dept VARCHAR(6),

number INTEGER,

PRIMARY KEY (username, dept, number),
FOREIGN KEY (username) REFERENCES Instructor(username),
FOREIGN KEY (dept, number) REFERENCES Class(dept, number)

);

CREATE TABLE Instructor (

username VARCHAR(8),

fname VARCHAR(50),
lname VARCHAR(50),

started_on CHAR(10),
PRIMARY KEY (username)

);

/* Delete a table from the database x/

DROP TABLE Instructor ;

/%
Sample data

*/

INSERT INTO Class
VALUES('CSE', 378,

Language');

INSERT INTO Class
VALUES('CSE', 451,

INSERT INTO Class
VALUES('CSE', 461,

Networks"');

INSERT INTO Instructor
VALUES('zahorjan',
INSERT INTO Instructor

'Machine Organization and Assembly

'"Introduction to Operating Systems');

'"Introduction to Computer Communication

'John', 'Zahorjan', '1985-01-01');

VALUES('djw', 'David', 'Wetherall', '1999-07-01');

INSERT INTO Instructor

VALUES('tom', 'Tom', 'Anderson', date('1997-10-01'));

INSERT INTO Instructor

VALUES('levy', 'Hank', 'Levy', date('1988-04-01'));

INSERT INTO Teaches
VALUES('zahorjan',
INSERT INTO Teaches

'CSE', 378);

VALUES('tom', 'CSE', 451);

INSERT INTO Teaches

VALUES('tom', 'CSE', 461);

INSERT INTO Teaches
VALUES('zahorjan',

INSERT INTO Teaches
VALUES('zahorjan',

INSERT INTO Teaches

"CSE', 451);

'CSE', 461);

VALUES('djw', 'CSE', 461);

INSERT INTO Teaches

VALUES('levy', 'CSE', 451);

/*
Example queries
*/

—— What courses are offered?
SELECT title
FROM Class;

—-— What's the first name of the instructor with login 'zahorjan'?
SELECT fname

FROM Instructor

WHERE username = 'zahorjan'

’

—— What 400-1level CSE classes are offered?

SELECT =*

FROM Class

WHERE dept = 'CSE' AND 400 <= number AND number <= '499'

—— If a string is used where a number is expected,

—— SQLite will try to convert the string into the number

—— it represents. SQLite also does the opposite conversion.

—— What classes have titles starting with Introduction?
SELECT x

FROM Class

WHERE title LIKE 'Introduction%'

—— The LIKE operator does simple pattern matching on the left value
—-— using the right value as a pattern. In LIKE patterns, '&' means
any number of arbitrary characters

—— If we misspell Introduction as INtroduction, let's catch that
—— by matching any second character:

SELECT =

FROM Class

WHERE title LIKE 'I_troduction%'

—— _ in LIKE patterns matches any single character.

/*
Fun with strings
*/

—— Show the class titles and their lengths.
SELECT title, LENGTH(title)
FROM Class

.
’

—— The LENGTH() method computes exactly that.

—— Truncate all class titles to 12 characters.

SELECT dept, number, SUBSTR(title, 1, 12) AS short_title
FROM Class

—— You can give aliases to computed columns with AS.
SUBSTR(str, start, length) computes the substring of “str'
with (optional) "1length', starting from index “start'

—— (first character is index 1).

/*
Date and time representations
*/
—— SQLite does not have a separate data type for dates, times,
—— or combined date and time. Instead, these are represented
—-— as specially formatted strings; dates are represented as yyyy-mm-dd
(see http://www.sqlite.org/lang_datefunc.html for more info).

—— Which instructors started before 19907
SELECT =x*

FROM Instructor

WHERE started_on < '1990-01-01'

’

—— Which instructors started before now?

—— (Hopefully, this is all of them!)

SELECT x*

FROM Instructor

WHERE started_on < DATE('now');

—— DATE() is a special method that formats a date, described in
—— pseudo-English by the parameter string, in the special SQLite
format.

—— Which instructors started on or after January 1, 15 years ago?
SELECT x

FROM Instructor

WHERE started_on >= DATE('now', 'start of year', '-15 years');

—— You can add extra parameters to DATE(), which describe changes
—— in time from the previous date description. These modifiers
— stack from left to right - so we start with today's date, move
-— back to the beginning of this year, then move back 15 years

—— (-15 years).

/*
Example queries involving joins
*/

—— Who teaches CSE 4517

SELECT i.fname, i.lname
FROM Class AS c, Teaches AS t, Instructor AS i
tables

WHERE c.dept = T.dept AND

—— Can give aliases to

—— Join conditions

c.number = T.number AND - "
T.username = I.username AND —— "
C.number = 451

—— What courses does jz teach?

SELECT c.dept, c.number

FROM Class c, Teaches t, Instructor i

WHERE c.dept t.dept AND
c.number = t.number AND
t.username i.username AND
i.username 'zahorjan'

—— Semantics of joins:

—— FROM clause takes the Cartesian product of all the named relations.
—— WHERE conditions that relate tuples in two tables implement the
join by

—— filtering the Cartesian product to only those matchings of tuples
that

-— meet the conditions.

—— Which courses do both Hank and John teach?

SELECT c.dept, c.number, c.title

FROM Class c, Teaches t1, Teaches t2, Instructor il, Instructor i2
WHERE c.dept = tl.dept AND c.dept = t2.dept AND

c.number = t1.
tl.username
il.username
t2.username
i2.username

—— We can use the
—— In fact, in this
once.

number AND c.number = t2.number AND
il.username AND

‘levy' AND

i2.username AND

'zahorjan'

same table multiple times in the same query.

query, we can't use Teaches or Instructor just

—— Why? Because with just one of both, we'd be asking for tuples

—— where the uid is

—— Which courses do
—-— wrong ——— why?

levy and zahorjan in the same tuple.

neither Hank nor David teach?

SELECT c.dept, c.number, c.title
FROM Class c, Teaches t, Instructor i

WHERE c.dept
c.number
t.username

t.dept AND
t.number AND
i.username AND
i.username NOT IN ('levy',

Idjwl)

—— The above returns two dupes of CSE 451 and 461, because

—— there are tuples in the join where the uid is neither levy or djw,
—— but the class is 451 and 461 —— this comes about from the fact

—— that tom and zahorjan teach those classes.

—— Here's a corrected version that tests that the xclass numberx
—— is not in the list that Hank and David teach:
—— The query below uses subquerions
— You will learn about subqueries in a few lectures. No need for hwl
nor hw2:
SELECT x*
FROM Class c
WHERE c.dept = 'CSE' AND
c.number NOT IN (
SELECT c.number
FROM Class c, Teaches t, Instructor i
WHERE c.dept = t.dept AND c.number = t.number AND
t.username = i.username AND
i.username IN ('levy', 'djw')
)

—— This (correctly) returns only CSE 378.

