CSE 344 Section 4 Worksheet
More Nested Queries

1) Consider a photo sharing Website, where users can post pictures, as well as
comment and rate other user's pictures. The schema is:

Users(uid, name)
Comment(uid, pid, score, txt)
Picture(pid, author, img)

The database has the following constraints:

- Comment.uid is a foreign key to Users

- Comment.pid is a foreign key to Picture

- Picture.author is a foreign key to Users

- Comment.score is an integer number between 1 and 10
- All attributes are NOT NULL

A picture is considered highly rated if it received at least one score of 10, from a user
other than its author. A cautious user is a user who commented only on highly rated
pictures. (A user who did not comment at all is also cautious.) Write a SQL query
that finds all cautious users. Your query should return a list of uid, name pairs

select x.uid, x.name
from users x
where x.uid not in
(select y.uid -- these are the non-cautious users
from comment y -- check that y.pid is not highly rated
where y.pid not in
(select u.pid -- the pictures that are highly rated
from comment u, picture v
where u.pid = v.pid and u.score = 10 and u.pid != v.author))

A negation can be avoided by using an aggregate, e.g. having(max(score)
<10.)



2) (SAME SCHEMA AS LAST WEEK) A database with the following schema stores a
collection of Webpages and the words they contain, and a collection of dictionaries
in several languages and the words in those languages:

Occurs(url, word)
Dictionary(language, word)

- url represents a Webpage.

- Every Webpage may contain several words, and every word may occur in several
Webpages.

- Every language may contain several words, and every word may occur in several
languages

- There are no nulls in the database.

Write a SQL query that computes, for each Webpage, the largest number of words
on that page in any language. For example, if a page has 100 words in French and 50
words in English (these two sets of words may be overlapping), then your query will
return 100 for that page. If a Webpage has only words that do not occur in any
language at all, then you do not need to return that Webpage.

select url, max(c)

from (select x.url, y.language, count(*) as c
from Occur x, Dictionary y
where x.word = y.word
group by x.url, y.language)

group by url



3) Consider the following social network database:

Person(pid, name)
Relationship(pid1, pid2, type)

Where:

- Person.pid is a key.
- Relationship.pid1 and Relationship.pid2 are foreign keys to Person.
- Relationship.type is either 'friend’' or 'enemy’'.

Keep in mind that Relationship is not symmetric: if p1 is a friend of p2, that does not
mean p2 is a friend of p1. It is not transitive either: if p1 is a fried of p2 who is a
friend of p3, it doesn't mean p1 is a fried of p3.

(a) (12 points) A second degree friend is the friend of a friend. Write a SQL query
that computes for each person the total number of their second degree friends. Your
query should return answers of the form: pid, name, count. Cryptic hint: “not every
person has friends, but you have to count everyone's second degree friends".

select x.pid, x.name, count(distinct z.pid2)

from Person x left outer join Relationship y
left outer join Relationship z

on x.pid = y.pid1 and y.pid2 = z.pid1

and y.type = 'friend’ and z.type = 'friend’

group by x.pid, x.name



(b) (12 points) Write a SQL query that returns all persons who have at least 12
common friends with “Mary". Your query should return answers of the form: pid1,
pid2, name, where pid1 is Mary's pid and pid2 is that of a person who has 12 or
more common friends (meaning there are at least 12 persons p such that pid1 and
p are friends, and pid2 and p are friends). If there are multiple people called Mary,
then you will report each of them.

select x.pid, y.pid, y.name

from Person x, Person y, Relationship u, Relationship v
where x.pid = u.pid1 and y.pid = v.pid1 and u.pid2 = v.pid2
and u.type = 'friend' and v.type = 'friend

and x.name = 'Mary'

group by x.pid, y.pid, y.name

having count(*) >= 12

(c) (12 points) Fred says: "my enemies' enemies are my friends". Prove that Fred is
wrong: write a query that returns all Fred's enemies' enemies that are not his
friends. Your query should return answers of the form: pid1, pid2, where pid1 is
Fred's pid and pid2 represents an enemy's enemy that is not Fred's friend.

select x.pid, z.pid2
from Person x, Relationship y, Relationship z
where x.name = 'Fred’
and x.pid = y.pid1 and y.pid2 = z.pid1
and y.type = 'enemy’ and z.type = 'enemy’
and not exists (select * from Relationship u
where u.type = 'friend’
and u.pid1 = y.pid1 and u.pid2 = z.pidZ2)



