CSE 344

2013Wi

Section 2 (1/17) Worksheet
Joins, Aggregates, and Indices

Question 1: Different Types of Joins
Let’s say [have the following create table statements:

CREATE TABLE PokemonNames(
Id INTEGER,

Name VARCHAR(30),

PRIMARY KEY (Id));

CREATE TABLE PokemonTypes(
Id INTEGER REFERENCES PokemonNames,
Type Varchar(30));

INSERT INTO PokemonNames VALUES(7, “Squirtle”);
INSERT INTO PokemonNames VALUES(65, “Alakazam”);
INSERT INTO PokemonNames VALUES(129, “Magikarp”);
INSERT INTO PokemonNames VALUES(147, “Dratini”);
INSERT INTO PokemonNames VALUES(NULL, NULL);
INSERT INTO PokemonNames VALUES(NULL, NULL);

INSERT INTO PokemonTypes VALUES(65, “Psychic”);
INSERT INTO PokemonTypes VALUES(NULL, NULL);
INSERT INTO PokemonTypes VALUES(147, “Dragon”);
INSERT INTO PokemonTypes VALUES(NULL, NULL);
INSERT INTO PokemonTypes VALUES(7, “Water”);
INSERT INTO PokemonTypes VALUES(129, “Water”);

And the tables have been populated as such:

PokemonNames PokemonTypes
Id Name Id Type

7 Squirtle 65 Psychic
65 Alakazam null null

129 Magikarp 147 Dragon
147 Dratini null null

148 null 7 Water

149 null 129 Water

Please list the resulting tuples from the following queries that exercise different
types of joins:

A) SELECT *
FROM PokemonNames n, PokemonTypes t
WHERE n.Id = t.Id

ANSWER:

Id Name Id Type

65 Alakazam 65 Psychic
147 Dratini 147 Dragon
7 Squirtle 7 Water

129 Magikarp 129 Water

B) SELECT *
FROM PokemonNames n
LEFT OUTER JOIN PokemonTypes t ON n.Id = t.Id

ANSWER

Id Name Id Type

7 Squirtle 7 Water

65 Alakazam 65 Psychic
129 Magikarp 129 Water
147 Dratini 147 Dragon
148 NULL NULL NULL
149 NULL NULL NULL

C) SELECT *
FROM PokemonNames n
RIGHT OUTER JOIN PokemonTypes t ON n.Id = t.Id

ANSWER

Id Name Id Type

7 Squirtle 7 Water

65 Alakazam 65 Psychic
129 Magikarp 129 Water
147 Dratini 147 Dragon
NULL NULL NULL NULL
NULL NULL NULL NULL

Question 2: BASIC AGGREGATES
A) Easy

Write a SQL query for the above Pokemon example data that finds the number of
Pokemon for each type. The resulting tuples should look something like this:

NULL 2
Dragon 1
Psychic 1
Water 2

SOLUTION:

SELECT Type, Count(*) as TypeCount
FROM PokemonTypes

GROUP BY Type;

B) Harder (this is a midterm level problem)

A database with the following schema stores a collection of Webpages and the
words they contain, and a collection of dictionaries in several languages and the
words in those languages:

Occurs(url, word)
Dictionary(language, word)

- url represents a Webpage.

- Every Webpage may contain several words, and every word may occur in several
Webpages.

- Every language may contain several words, and every word may occur in several
languages

- There are no nulls in the database.

Write a SQL query that retrieves all languages that occur in more than 1000
Webpages. A language “occurs” in a Webpage if the Webpage contains
a word in that language.

SOLUTION (11sp Midterm):
select y.language

from Occurs x, Dictionary y
where x.word = y.word

group by y.language

having count(distinct url) > 1000
C) Hard (another midterm level problem)

You are in charge of managing the program committee for an important conference.
The following database stores information about papers submitted to the
conference (table Paper), reviewers on the program committee (table Reviewer),
and the assignment of reviewers to papers (table Reviews). Each reviewer on the
program committee will have to review a set of papers. Each paper will be reviewed
by some subset of reviewers.

Paper(pid, title)

Reviewer(rid, name)

Reviews(rid, pid)

- pid is a unique paper identier and the primary key of the Paper table.

- rid is a unique reviewer identier and the primary key of the Reviewer table.
- Reviews.rid is a foreign key that references Reviewer.rid.

- Reviews.pid is a foreign key that references Paper.pid.

- A reviewer is assigned zero or more papers.

- A paper is assigned zero or more reviewers.

Write a SQL query that finds all papers with fewer than three reviewers assigned to
them. The output of the query should be a list of paper titles. The result should
include papers without any reviewers assigned to them.

(HINT: Pay close attention to which the type of join you use)

SOLUTION:

SELECT P.title

FROM Paper P LEFT OUTER JOIN Reviews X ON P.pid = X.pid
GROUP BY P.pid, P.title

HAVING count(*) <3

