Introduction to Data Management
CSE 344

Lecture 27: Map Reduce,
slides on Pig Latin

Announcements

« HW8 due on Friday

— Try to make lots of progress over weekend
* Final exam:

— 3/20, 8:30-10:20, this room

— Comprehensive

— Open books, open notes, closed computers
* Review session:

— Saturday, 3/16, 10am, Room TBD

Outline

* Aclever parallel evaluation algorithm

» Parallel Data Processing at Massive Scale

— MapReduce

— Reading assignment:
Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Uliman
http://i.stanford.edu/~ullman/mmds.html

* Assignment: learn Pig Latin for HW8 from the
lecture notes, example starter code, and the
Web; will not discuss in class

A Challenge

 Have P servers (say P=27 or P=1000)

 How do we compute this query?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query?
Q(x,y,z) = R(X,y),S(y,2),T(z,X)

This computes all “triangles”.

E.g. let Follows(x,y) be all pairs of Twitter
users s.t. x follows y. Let R=S=T=Follows.
Then Q computes all triples of people that
follow each other.

A Challenge

 Have P servers (say P=27 or P=1000)
 How do we compute this query?
Q(x,y,2) = R(x,y),S(y,2), T(z,X)
o Step 1:
— Each server sends R(x,y) to server h(y) mod P
— Each server sends S(y,z) to server h(y) mod P

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query?
Q(x,y,z) = R(x,y),S(y,2),T(z,X)
Step 1:
— Each server sends R(x,y) to server h(y) mod P
— Each server sends S(y,z) to server h(y) mod P

Step 2:

— Each server computes R=S locally

— Each server sends [R(X,y),S(y,z)] to h(x) mod P
— Each server sends T(z,x) to h(x) mod P

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query?
Q(x,y,z) = R(x,y),3(y,z), T(z,X)
Step 1:

— Each server sends R(x,y) to server h(y) mod P
— Each server sends S(y,z) to server h(y) mod P
Step 2:

— Each server computes R>=S locally

— Each server sends [R(X,y),S(y,z)] to h(x) mod P
— Each server sends T(z,x) to h(x) mod P

Final output:
— Each server computes locally and outputs R=<S>T

A Challenge

« Have P servers (say P=27 or P=1000)

 How do we compute this query in one step?
Q(x,y,2z) = R(x,y),S(y,z), T(z,x)

A Challenge

« Have P servers (say P=27 or P=1000)

 How do we compute this query in one step?
Q(x,y,z) = R(x,y),S(y,2), T(z,x)

« Organize the P servers into a cube with side P”
— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,z) = R(x,y),S(y,2),T(z,X)

Organize the P servers into a cube with side P*

— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”?
Step 1: |
— Each server sends R(x,y) to all servers (h(x),h(y),”) W
— Each server sends S(y,z) to all servers (*,h(y),h(z)) »i "
— Each server sends T(x,z) to all servers (h(x),*,h(z)) L~ i

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,z) = R(x,y),S(y,z), T(z,X)

Organize the P servers into a cube with side P”

— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”

Step 1:
— Each server sends R(x,y) to all servers (h(x),h(y),*)
— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output:
— Each server (i,j,k) computes the query R(x,y),S(y,z), T(z,x) locally

j

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,2) = R(x,y),S(y,z), T(z,X)

Organize the P servers into a cube with side P”
— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”

Step 1:
— Each server sends R(x,y) to all servers (h(x),h(y),*)
— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output:

— Each server (i,j,k) computes the query R(x,y),S(y,z), T(z,x) locally
Analysis: each tuple R(x,y) is replicated at most P* times

Parallel Data Processing
at Massive Scale

Data Centers Today

» Data Center: Large number of commodity
servers, connected by high speed,
commodity network

« Rack: holds a small number of servers

» Data center: holds many racks

Data Processing
at Massive Scale

» Want to process petabytes of data and more

» Massive parallelism:

— 100s, or 1000s, or 10000s servers
— Many hours

* Failure:
— If medium-time-between-failure is 1 year
— Then 10000 servers have one failure / hour

Distributed File System (DFS)

* For very large files: TBs, PBs

« Each file is partitioned into chunks,
typically 64MB

« Each chunk is replicated several times
(23), on different racks, for fault tolerance
* Implementations:
— Google’'s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source

MapReduce

* Google: paper published 2004
* Free variant: Hadoop

 MapReduce = high-level programming
model and implementation for large-scale
parallel data processing

Observation: Your favorite parallel algorithm...

1 1 ! f

Reduce

i P
SEEEEE

CSE 344 - Winter 2013

19

Typical Problems Solved by MR

« Read a lot of data

* Map: extract something you care about
from each record

 Shuffle and Sort

« Reduce: aggregate, summarize, filter,
transform Outline stays the same,
map and reduce change to

* Write the results fit the problem

slide source: Jeff Dean

Data Model

Files !
Afile = a bag of (key, wvalue) pairs
A MapReduce program:

* Input: a bag of (inputkey, wvalue)pairs
* Qutput: a bag of (outputkey, wvalue) pairs

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, wvalue)
* Ouput:
bag of (intermediate key, wvalue)

System applies the map function in parallel
to all (input key, wvalue) pairsin
the input file

CSE 344 - Winter 2013 22

Step 2: the REDUCE Phase

User provides the REDUCE function:
* Input:

(Lntermediate key, bag of wvalues)
» Qutput: bag of output (values)

System groups all pairs with the same

intermediate key, and passes the bag of
values to the REDUCE function

CSE 344 - Winter 2013 23

Example

« Counting the number of occurrences of each
word in a large collection of documents

 Each Document
— The key = document id (did)
— The value = set of words (word)

map(String key, String value): reduce(String key, Iterator values):
// key: document name // key: a word
// value: document contents // values: a list of counts
for each word w in value: int result =0;

Emitintermediate(w, “1”); for each v in values:

result += Parselnt(v);
Emit(AsString(result));

M

>
=

REDUCE

(Bob, 1)

—>
(did1,v1) |~ [wen | SMUTE
— 2| (Bob,1) (of, (1,1,1,...,1)) —> | (of, 25)
>< (the, (1,1,...)) —> | (the, 77)
(did2,v2) |~ > | et (Bob,(1...) —> | (Bob, 12)
—> | (to,1) —>
(did3,v3)|—> \

25

Jobs v.s. Tasks

A MapReduce Job

— One single “query”, e.g. count the words in all
docs

— More complex queries may consists of multiple
jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

Workers

A worker is a process that executes one
task at a time

* Typically there is one worker per
processor, hence 4 or 8 per node

MapReduce Job

MAP Tasks

4

(did1,v1)

(did2,v2)

(did3,v3)

(Bob, 1)

(the,1)

(Bob, 1)

(of,1)

(to,1)

(Bob, 1)

Shuffle

REDUCE Tasks

/

(of, (1,1,1,...

1))

(the, (1,1,...))

(Bob,(1...))

=<

by oy

(of, 25)

(the, 77)

(Bob, 12)

MapReduce Execution Details
..
Reduce Task

Intermediate d.ata
(Shuffle)

Map Task
Data not
necessarily local
3
File system: GFS
or HDFS
CSE 344 - Winter 2013 .

MR Phases

Each Map and Reduce task has multiple phases:

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—Map —.>:Combine:——>‘ Copy i—*@—»l Reduce \
file | 11 l file |
Local storage ———

CSE 344 - Winter 2013 30

Example: CloudBurst

g2
o
—
5
T

Sort Reduce

0m

LA

>

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

Timo

31

Implementation

There is one master node
Master partitions input file into M splits, by key

Master assigns workers (=servers) to the M
map tasks, keeps track of their progress

Workers write their output to local disk,
partition into R regions

Master assigns workers to the R reduce tasks

Reduce workers read regions from the map
workers’ local disks

Interesting Implementation Details

Worker failure:
» Master pings workers periodically,

* If down then reassigns the task to another
worker

Interesting Implementation Details

Backup tasks:

« Straggler = a machine that takes unusually
long time to complete one of the last tasks.
Eg:

— Bad disk forces frequent correctable errors
(30MB/s - 1MB/s)

— The cluster scheduler has scheduled other tasks
on that machine

» Stragglers are a main reason for slowdown

* Solution. pre-emptive backup execution of
the last few remaining in-progress tasks

MapReduce Summary

* Hides scheduling and parallelization
detalls

 However, very limited queries
— Difficult to write more complex queries
— Need multiple MapReduce jobs

» Solution: declarative query language

Declarative Languages on MR

» PIG Latin (Yahoo!)

— New language, like Relational Algebra
— Open source

» HiveQL (Facebook)
— SQL-like language
— Open source
« SQL / Dremmel / Tenzing (Google)
— SQL on MR
— Proprietary

Parallel DBMS vs MapReduce

 Parallel DBMS

— Relational data model and schema

— Declarative query language: SQL

— Many pre-defined operators: relational algebra

— Can easily combine operators into complex queries

— Query optimization, indexing, and physical tuning

— Streams data from one operator to the next without blocking

— Can do more than just run queries: Data management
« Updates and transactions, constraints, security, etc.

Parallel DBMS vs MapReduce

 MapReduce

Data model is a file with key-value pairs!

No need to “load data” before processing it

Easy to write user-defined operators

Can easily add nodes to the cluster (no need to even restart)
Uses less memory since processes one key-group at a time
Intra-query fault-tolerance thanks to results on disk
Intermediate results on disk also facilitate scheduling
Handles adverse conditions: e.g., stragglers

Arguably more scalable... but also needs more nodes!

Pig Latin Mini-Tutorial

(will not discuss in class; please
read in order to do homework 8)

CSE 344 - Winter 2013

39

Pig Latin Overview

» Data model = loosely typed nested relations
* Query model = a SQL-like, dataflow language

 Execution model:

— Option 1: run locally on your machine; e.g. to debug
* In HWG6, debug with option 1 directly on Amazon
— Option 2: compile into graph of MapReduce jobs,
run on a cluster supporting Hadoop

40

Example

 Input: a table of urls:
(url, category, pagerank)

« Compute the average pagerank of all
sufficiently high pageranks, for each
category

* Return the answers only for categories
with sufficiently many such pages

41

Page(url, category, pagerank)

First in SQL...

SELECT category, AVG(pagerank)
FROM Page

WHERE pagerank > 0.2
GROUP BY category
HAVING COUNT(*) > 106

CSE 344 - Winter 2013 42

Page(url, category, pagerank)

...then in Pig-Latin

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big _groups = FILTER groups

BY COUNT(good urls) > 106
output = FOREACH big_groups GENERATE
category, AVG(good urls.pagerank

CSE 344 - Winter 2013 43

Types in Pig-Latin

Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘'manager’), ...}

Maps: we will try not to use these

44

Types in Pig-Latin

Tuple components can be referenced by
number

- $0, $1, $2, ...

Bags can be nested ! Non 1t Normal Form
- {(a, {1,4,3}), (¢ {}), (d,{2,2,5,3,2})}

45

[Olston’2008]

‘lakers’, 1)
= 4 .) (’ 4)
t (alice ,{ (‘iPod’, 2) }[age —>20J)
Let fields of tuple t be called £1, £2, £3
Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20 |
- (‘lakers’)
Projection £2.%$0 { (‘iPod’)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=3
Conditional f3#‘age’>187 :
. dult’
Expression ‘adult’: ‘minor’ add
: ‘lakers’, 1
Flattening FLATTEN(£2) ‘iPod’, 2

[Olston’2008]

Loading data

* Input data = FILES !
— Heard that before ?

 The LOAD command parses an input file
into a bag of records

* Both parser (="deserializer”) and output
type are provided by user

For HW6: simply use the code provided

47

[Olston’2008]

Loading data

queries = LOAD ‘query_log.txt
USING myLoad()
AS (userlD, queryString, timeStamp)

Pig provides a set of built-in load/store functions

A = LOAD 'student’ USING PigStorage('\t') AS (name: chararray, age:int, gpa: float);

same as
A = LOAD 'student' AS (name: chararray, age:int, gpa: float);

CSE 344 - Winter 2013 48

[Olston’2008]

Loading data

« USING userfuction() --is optional
— Default deserializer expects tab-delimited file

* AS type — is optional

— Default is a record with unnamed fields:; refer to them
as 30, $1, ...

* The return value of LOAD is just a handle to a bag
— The actual reading is done in pull mode, or parallelized

49

[Olston’2008]

FOREACH

expanded queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded queries is a nested bag

CSE 344 - Winter 2013 50

[Olston’2008]

FOREACH

expanded queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

CSE 344 - Winter 2013 51

[Olston’2008]

queries:
(userld, queryString, timestamp) 3
FOREACH gueries GENERATE (alice, (}‘{'gﬁgi S"ﬁl‘:;-;‘) >)
(alice, lakers, 1) expandQuery(queryString) 27

(bob, iPod, 3)

(without flattening) > (1Pod nano)]
bob, ~(iPod shuffle) -

-’

: . (alice, lakers rumors)
With flattening “cqlice, lakers news)
» " (bob, iPod nanc)
(bob, iPod shuffle)

CSE 344 - Winter 2013 52

[Olston’2008]

FLATTEN

Note that it is NOT a normal function !
(that’s one thing | don't like about Pig-latin)

 Anormal FLATTEN would do this:
— FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
— Its type is: {{T}} =2 {T}
 The Pig Latin FLATTEN does this:
— FLATTEN({4,5,6}) = 4, 5, 6
—Whatisits Type? {T} > T, T, T, ..., T P?°7°7°

[Olston’2008]

FILTER

Remove all queries from Web bots:

real_queries = FILTER queries BY userld neq ‘bot’ I

Better: use a complex UDF to detect Web bots:

real_queries = FILTER queries
BY NOT isBot(userld)

CSE 344 - Winter 2013 54

[Olston’2008]

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

CSE 344 - Winter 2013 55

[Olston’2008]

results:
(queryString, url, rank)

(lakers, nba.com, 1)
(lakers, espn.com, 2) |
(kings, nhl.com, 1)
(kings, nba.com, 2) —+—

revenue.

(queryString, adSlot, amount)
(lakers, nba.com, 1, top , 50)

(lakers, top, 50) — (lakers, nba.com, 1, side, 20)
(lakers, side, 20) \ 4 p (lakers, espn.com, 2, top, 50)
(kings, top, 30) JOIN (lakers, espn.com, 2, side, 20)
(kings, side, 1@) L

CSE 344 - Winter 2013 56

[Olston’2008]

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =

FOREACH grouped revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(query3tring, totalRevenue)}

CSE 344 - Winter 2013 57

[Olston’2008]

Simple MapReduce

input : {(field1, field2, field3,)}
map_result = FOREACH input
GENERATE FLATTEN(map(*))
key groups = GROUP map_result BY $0

output = FOREACH key groups
GENERATE $0, reduce($1)

map_result . {(a1, a2, a3, .. .)}
key groups : {(al, {(a2, a3, .. .)})}

CSE 344 - Winter 2013 58

[Olston’2008]

Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_ data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ?

CSE 344 - Winter 2013 59

results:

(lakers, nba.com, 1)

Co-Group

[Olston’2008]

grouped_data: (group, results, revenue)

(lakers, espn.com, 2)

(queryString, url, rank) (laker's (lakers, nba.com, 1)
COGROUP

(lakers, espn.com, 2)

(kings, nhl.com, 1) A
(kings, nba.com, 2) —r

revenue:
(queryString, adSlot, amount)

(lakers, top, 50) —
(lakers, side, 20)
(kings, top, 3@)
(kings, side, 1@)

: (kings, nhl.com, 1)
'“"95' {(kings, nba.com, 2)

-

-

Sy

-

(lakers, top, 50)
9 (lakers, side, 20)

—

(kings, top, 3@)
) (kings, side, 10)

S—

Is this an inner join, or an outer join ?

CSE 344 - Winter 2013

60

[Olston’2008]

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped data
GENERATE

FLATTEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

CSE 344 - Winter 2013 61

[Olston’2008]
Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped _data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN

CSE 344 - Winter 2013 62

[Olston’2008]

Asking for Output: STORE

STORE query revenues INTO "myoutput’
USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

CSE 344 - Winter 2013 63

[Olston’2008]
Implementation

Over Hadoop !

Parse query:

— Everything between LOAD and STORE -
one logical plan

Logical plan - graph of MapReduce ops

All statements between two (CO)GROUPs
- one MapReduce job

64

[Olston’2008]
Implementation

map, reduce, map; reduce;map,;,, reduce;,,
load » filter » group ------------ » cogroup ----p cogr':ow —>
C. S, i
load

CSE 344 - Winter 2013 65

Review: MapReduce

Data is typically a file in the Google File System
— HDFS for Hadoop

— File system partitions file into chunks

— Each chunk is replicated on k (typically 3) machines

Each machine can run a few map and reduce tasks
simultaneously

Each map task consumes one chunk
— Can adjust how much data goes into each map task using “splits”
— Scheduler tries to schedule map task where its input data is located

Map output is partitioned across reducers

Map output is also written locally to disk

Number of reduce tasks is configurable

System shuffles data between map and reduce tasks
Reducers sort-merge data before consuming it

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—Map —#'Combine

- = —

——>‘ Copy |—>M—>‘ Reduce \
l filel

HDFS

Local storage

CSE 344 - Winter 2013 67

MapReduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
N _- ’
S N P d -’
\\ _- L
AN ~

N P 4
map map
reduce reduce

Ack: Alan Gates from Yahoo! 68 - 9’

MapReduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
S N\ " = ~ ¢ -
N\ N R _ - ~
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
reduce reduce

Ack: Alan Gates from Yahoo! 69 - 9.’

MapReduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\\ //”
\\\ ,,/
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
art, (1, 1) reduce reduce Romeo, (1, 1, 1)
hurt (1), wherefore, (1)
thou (1, 1) what, (1)

Ack: Alan Gates from Yahoo! -70- Q!

MapReduce lllustrated

Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
\\\ //”
\\\ ,,/
Romeo, 1 S <"
Romeo, 1 What, 1
wherefore, 1 map map art, 1
art, 1 thou, 1
thou, 1 hurt, 1
Romeo, 1
art, (1, 1) reduce reduce Romeo, (1,1, 1)
hurt (1), wherefore, (1)
thou (1, 1) _ what, (1)
art, 2 7 “~_ Romeo, 3
hurt, 1 <~ . wherefore, 1
thou, 2 what, 1

Ack: Alan Gates from Yahoo! -71- Q.’

Making Parallelism Simple

« Sequential reads = good read speeds

 In large cluster failures are guaranteed; MapReduce handles
retries

« (Good fit for batch processing applications that need to touch
all your data:

— data mining
— model tuning

« Bad fit for applications that need to find one particular record

« Bad fit for applications that need to communicate between
processes; oriented around independent units of work

Ack: Alan Gates from Yahoo! 72- Q’

What is Pig?

* An engine for executing programs on top of Hadoop
« |t provides a language, Pig Latin, to specify these programs

* An Apache open source project
http://hadoop.apache.org/pig/

Ack: Alan Gates from Yahoo! _73- Q’

Why use Pig?

Suppose you have Load Users - Load Pages
user data in one file, *
website data in |
another, and you

need to find the top 5

most visited sites by
users aged 18 - 25.

Join on name.
Grouponut
Gout ks
Oonderby s
Take'op5

Ack: Alan Gates from Yahoo! 74- Q’

In MapReduce

import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;

import org.apache.hadoop.mapred.jobcontrol.Job;

import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
public static class LoadPages extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text val,
OutputCollector<Text, Text> oc,
Reporter reporter) throws IOException {
// Pull the key out

String line = val.toString();
int firstComma = line.indexOf(',');

String key = line.substring(0, firstComma);
String value = line.substring(firstComma + 1);
Text outKey = new Text(key);

// Prepend an index to the value so we know which file

Text outval = new Text("1" + value);
oc.collect(outKey, outval);

¥

3
public static class L ilterusers
implements Mapper<LongWritable, Text, Text, Text> {

public void map(LongWritable k, Text val,
OutputCollector<Text, Text>
Reporter reporter) throws IOExceptxon {
// Pull the key out

String line = val.toString();

int firstComma = line.indexOf(',');

Sstring value = line.substring(firstComma + 1);
int age = Integer.parselInt(value);

if (age < 18 || age > 25) return;

string key = line.substring(0, firstComma);
Text outKey = new Text(key);

// Prepend an index to the value so we know which file

Text outval = new Text("2" + value);
oc.collect(outKey, outval);
}
¥
public static class Join extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {

public void reduce(Text key,
Iterator<Text> iter,
OutputCollector<Text, Text> oc
Reporter reporter) throws IOExGeption

// For each value, figure out which file it's from and

store it
// accordingly.
List<String> first = new ArrayList<string>()
List<String> second = new ArrayList<String>();

while (iter.hasNext()) {
er.next();
String value = t. toSt:xng();
if (value.charAt(0) == '
first.add(value.substring(1));
lse second.add(value.substring(1));

reporter.setStatus("OK");

// Do the cross product and collect the values
{

for (String sl : first)
for (string s2 : second) {
String outval = key + "," + sl YLt o+ 825

oc.collect(null, new Texc(outval)),
reporter.setstatus("OK");

}

3
publxc static class LoadJoined extends MapReduceBase
mplements Mapper<Text, Text, Text, LongWritable> {

public void map(
Text k,

Text val,
outputCollector<Text, LongWritable> oc,
Reporter reporter) throws IoBxception {

// Find the ur.
string line

val.toStrinq():

int firstComma line.indexOf(',")
int secondComma = line.indexOf(',', firstComma);
String key = line.substring(firstComma, secondComma);

// drop the rest of the record, I don't need it anymore,
// just pass a 1 for the combiner/reducer to sum instead.
Text outKey = new Text(key);

oc.collect(outKey, new LongWritable(1L));

¥

b
public static class ReduceUrls
implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

public void reduce(
Text ke
Iteratcr<LongWr1table> iter,
OutputCollector<writableComparable, Writable> oc,
Reporter reporter) throws IOException

// Bdd up all the values we see

long sum = 0;
while (iter.hasNext()) {

+= iter.next().get()

reporter.setStatus("OK")

oc.collect(key, new LongWritable(sum));
}

¥
public static class LoadCllcks extends MapReduceBase
ts b1 writable, LongWritable,

Text> {

public void map(
writableComparable key,
writable
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {
oc.collect((LongWritable)val, (Text)key);
}

¥
public static class LimitClicks extends MapReduceBase
implements Reducer<LongWritable, Text, LongWritable, Text> {

int count = 0;

public void reduce(
LongWritable key,
Iterator<Text> iter,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {

// only output the first 100 records

while (count < 100 && iter.hasNext()) {
oc.collect(key, iter.next());
countt+;
¥
¥
b
public static void main(String[] args) throws IOException {
obConf 1p = new JobConf (MRExample.class)

lp.setJobName("Load Pages");
1p.setInputFormat (TextInputFormat.class);

1p.setoutputKeyClass (Text.class);
1p.setoutputvalueClass (Text.class);
1p4setMapperClass(LoadPaqes.class):
FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages”));

FileOutputFormat.setOutputPath (1,

new Path(" /user/gates/tmp/xndexed pages"));
1p.setNumReduceTasks (0);
Job loadPages = new Job(lp

JobConf 1fu = new JobConf(MRExample.class);
1lfu.setJobName("Load and Filter Users");
1fu.setInputFormat (TextInputFormat.class);
1fu.setOutputKeyClass (Text.class);
1fu.setOutputvalueClass (Text.class);
1fu.setMapperClass (LoadAndFilterUsers.class);
FileInputFormat.addInputPath(1lfu, new
Path("/user/gates/users”));

FileOutputFormat.setOutputPath(1lfu,

new Path("/user/gates/tmp/filtered_users"));
1fu.setNumReduceTasks (0);
Job loadUsers = new Job(lfu);

JobConf join = new JobConf(MRExample.class);
join.setJobName("Join Users and Pages");
join.setInputFormat (KeyValueTextInputFormat.class);
join.setOutputKeyClass (Text.class);
join.setOutputvalueClass(Text.class);
join.setMapperClass(IdentityMapper.class);
join.setReducerClass(Join.class);
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered users"));
FileOutputFormat.setOutputPath(join, new
Path(” /user/gates/tmp/jolned"))
NumReduceTasks (50) ;
Fob jeindon o new Job(Soins
joinJob.addpependingJob (loadPages) ;
joinJob.addpependingJob (loadUsers) ;

JobConf group = new JobConf(MRExample.class);
group.setJobName ("Group URLS
group.setInputFormat (KeyValueTextInputFormat.class);
group.setOutputKeyClass(Text.class);
group.setOutputvalueClass(LongWritable.class);
group.setOutputFormat (SequenceFileOutputFormat.class);
group.setMapperClass (LoadJoined.class) ;
group.setCombinerClass (ReduceUrls.class);
group.setReducerClass (ReduceUrls.class);
FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"))
FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped”));
group.setNumReduceTasks (50) ;
Job groupJob = new Job(group);
groupJob.addDependingJob(joinJob);

JobConf topl00 = new JobConf (MRExample.class);
topl00.setJobName("Top 100 sites");
+op100.setInputFormat (SequenceFileInputFormat.class);
topl00.setOutputKeyClass (LongWritable.class);
topl00.setOutputValueClass (Text.class);
topl00.setOutputFormat (SequenceFileOutputFormat.class);
+op100.setMapperClass (LoadClicks.class) ;
topl00.setCombinerClass(LimitClicks.class);
topl00.setReducerClass (LimitClicks.class);
FileInputFormat.addInputPath(topl00, new
Path("/user/gates/tmp/grouped"));
FileOutputFormat.setOutputPath(topl00, new
Path("/user/gates/toplOOsitesforusersl8to25"));
topl00.setNumReduceTasks (1) ;
Job limit = new Job(topl00);
limit.addDependingJob (groupJdob) ;

JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");

jc.addJob(loadPages) ;

jc.addJob(loadUsers) ;

jc.addJob(joindob) ;

jc.addJob(groupJob) ;

jc.addJob(limit);

je.run();

170 lines of code, 4 hours to write

Ack: Alan Gates from Yahoo!

-75 -

In Pig Latin

Users = load ‘users’ as (name, age);
Fltrd = filter Users by
age >= 18 and age <= 25;

Pages = load ‘pages’ as (user, url);
Jnd = jJoin Fltrd by name, Pages by user;
Grpd = group Jnd by url;
smmd = foreach Grpd generate group,

COUNT (Jnd) as clicks;
Srtd = order Smmd by clicks desc;
TopS = 1limit Srtd 5;
store Topb into ‘topbsites’;

O lines of code, 15 minutes to write

Ack: Alan Gates from Yahoo! -76- Q’

Pig System Overview

LOAD 'filel' AS (sid,pid,mass,px:double);
= LOAD 'file2' AS (sid,pid,mass,px:double);

B
e o ., Piglatin ||c - FILTER A BY px < 1.0;
~ program | p = JOIN C BY sid,
B BY sid;
output STORE g INTO 'output.txt';

Parsed
| ---------- program
Plg compiler
----------------------- M
I plan

CSE 344 - Winter 2013 77

But can it fly?

Pig Performance vs Map-Reduce

go 1 /6

7.0 -
6.0 -
5.0 -
40 -

30 - 2.5
1.8 1.6

2.0 - ' 1.5 1.4 1.2 1.0

1.0 -
0o ...----

Sep 11 08 Nov 11 Jan 20 09Feb 23 09Apr 20 09Jun 28 09 Aug 28 Oct 18 09
08 09

1

S/

