Introduction to Data Management CSE 344

Lecture 27: Map Reduce, slides on Pig Latin

Announcements

- HW8 due on Friday
 - Try to make lots of progress over weekend
- Final exam:
 - 3/20, 8:30-10:20, this room
 - Comprehensive
 - Open books, open notes, closed computers
- Review session:
 - Saturday, 3/16, 10am, Room TBD

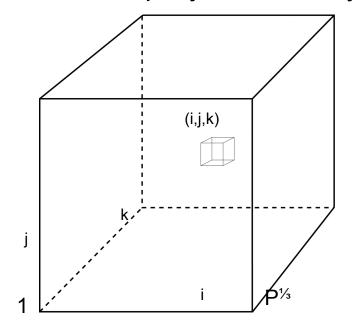
Outline

- A clever parallel evaluation algorithm
- Parallel Data Processing at Massive Scale
 - MapReduce
 - Reading assignment:
 Chapter 2 (Sections 1,2,3 only) of Mining of Massive Datasets, by Rajaraman and Ullman http://i.stanford.edu/~ullman/mmds.html
- Assignment: learn Pig Latin for HW8 from the lecture notes, example starter code, and the Web; will not discuss in class

- Have P servers (say P=27 or P=1000)
- How do we compute this query?

$$Q(x,y,z) = R(x,y),S(y,z),T(z,x)$$

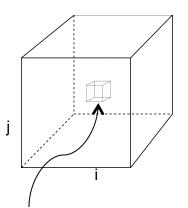
- Have P servers (say P=27 or P=1000)
- How do we compute this query? Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- This computes all "triangles".
- E.g. let Follows(x,y) be all pairs of Twitter users s.t. x follows y. Let R=S=T=Follows. Then Q computes all triples of people that follow each other.

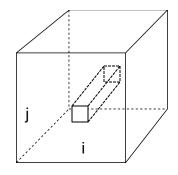

- Have P servers (say P=27 or P=1000)
- How do we compute this query?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- Step 1:
 - Each server sends R(x,y) to server h(y) mod P
 - Each server sends S(y,z) to server h(y) mod P

- Have P servers (say P=27 or P=1000)
- How do we compute this query?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- Step 1.
 - Each server sends R(x,y) to server h(y) mod P
 - Each server sends S(y,z) to server h(y) mod P
- Step 2:
 - Each server computes R⋈S locally
 - Each server sends [R(x,y),S(y,z)] to h(x) mod P
 - Each server sends T(z,x) to h(x) mod P

- Have P servers (say P=27 or P=1000)
- How do we compute this query?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- Step 1:
 - Each server sends R(x,y) to server h(y) mod P
 - Each server sends S(y,z) to server h(y) mod P
- Step 2:
 - Each server computes R⋈S locally
 - Each server sends [R(x,y),S(y,z)] to h(x) mod P
 - Each server sends T(z,x) to h(x) mod P
- Final output:
 - Each server computes locally and outputs R⋈S⋈T

- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)


- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- Organize the P servers into a cube with side P^{1/3}
 - Thus, each server is uniquely identified by (i,j,k), i,j,k≤P^{1/3}


- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- Organize the P servers into a cube with side P^{1/3}
 - Thus, each server is uniquely identified by (i,j,k), i,j,k≤P^{1/3}
- Step 1:
 - Each server sends R(x,y) to all servers (h(x),h(y),*)
 - Each server sends S(y,z) to all servers (*,h(y),h(z)) >
 - Each server sends T(x,z) to all servers (h(x),*,h(z))

R(x,y)

- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- Organize the P servers into a cube with side P^{1/3}
 - Thus, each server is uniquely identified by (i,j,k), i,j,k≤P^{1/3}
- Step 1:
 - Each server sends R(x,y) to all servers (h(x),h(y),*)
 - Each server sends S(y,z) to all servers (*,h(y),h(z))
 - Each server sends T(x,z) to all servers (h(x),*,h(z))
- Final output:
 - Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

- Have P servers (say P=27 or P=1000)
- How do we compute this query in one step?
 Q(x,y,z) = R(x,y),S(y,z),T(z,x)
- Organize the P servers into a cube with side P^{1/3}
 - Thus, each server is uniquely identified by (i,j,k), i,j,k≤P^{1/3}
- Step 1:
 - Each server sends R(x,y) to all servers (h(x),h(y),*)
 - Each server sends S(y,z) to all servers (*,h(y),h(z))
 - Each server sends T(x,z) to all servers (h(x),*,h(z))

- Final output:
 - Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally
- Analysis: each tuple R(x,y) is replicated at most P^{1/3} times

Parallel Data Processing at Massive Scale

Data Centers Today

 Data Center: Large number of commodity servers, connected by high speed, commodity network

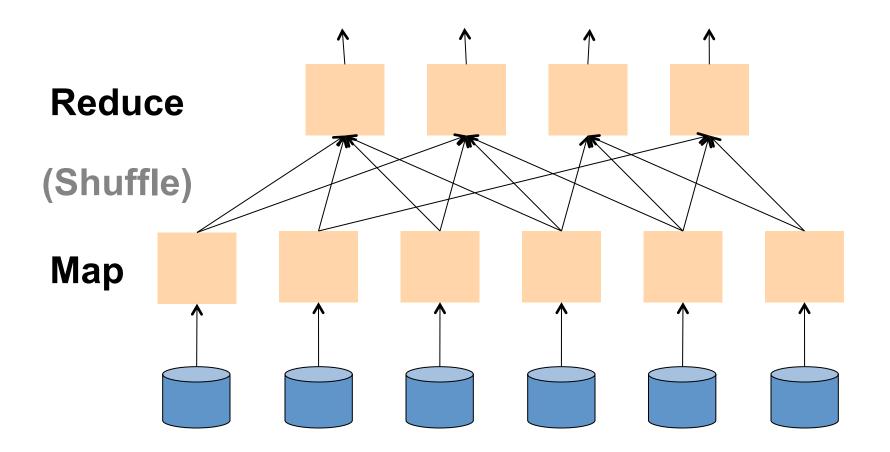
Rack: holds a small number of servers

Data center: holds many racks

Data Processing at Massive Scale

- Want to process petabytes of data and more
- Massive parallelism:
 - 100s, or 1000s, or 10000s servers
 - Many hours
- Failure:
 - If medium-time-between-failure is 1 year
 - Then 10000 servers have one failure / hour

Distributed File System (DFS)


- For very large files: TBs, PBs
- Each file is partitioned into chunks, typically 64MB
- Each chunk is replicated several times
 (≥3), on different racks, for fault tolerance
- Implementations:
 - Google's DFS: GFS, proprietary
 - Hadoop's DFS: HDFS, open source

MapReduce

- Google: paper published 2004
- Free variant: Hadoop

 MapReduce = high-level programming model and implementation for large-scale parallel data processing

Observation: Your favorite parallel algorithm...

Typical Problems Solved by MR

- Read a lot of data
- Map: extract something you care about from each record
- Shuffle and Sort
- Reduce: aggregate, summarize, filter, transform
 Outline stays the same,
- Write the results

map and reduce change to fit the problem

CSE 344 - Winter 2013

Data Model

Files!

A file = a bag of (key, value) pairs

A MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs

Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Ouput: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in the input file

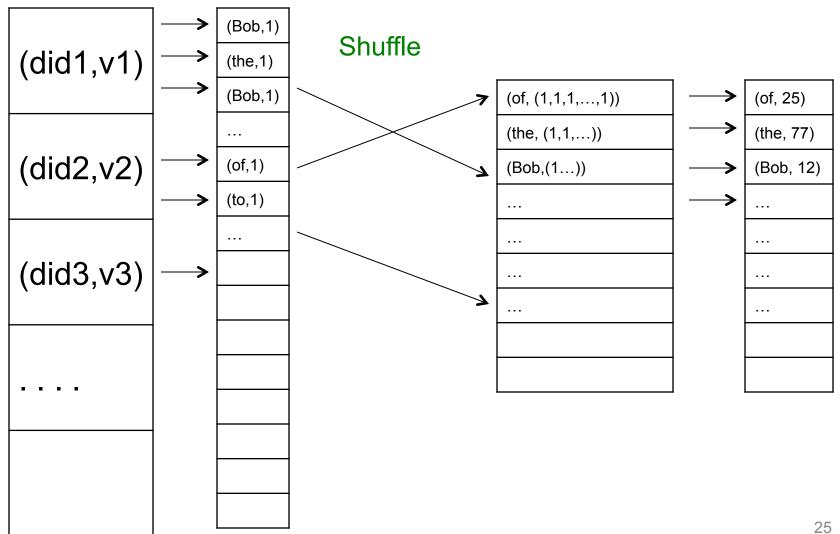
Step 2: the REDUCE Phase

User provides the REDUCE function:

- Input: (intermediate key, bag of values)
- Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example

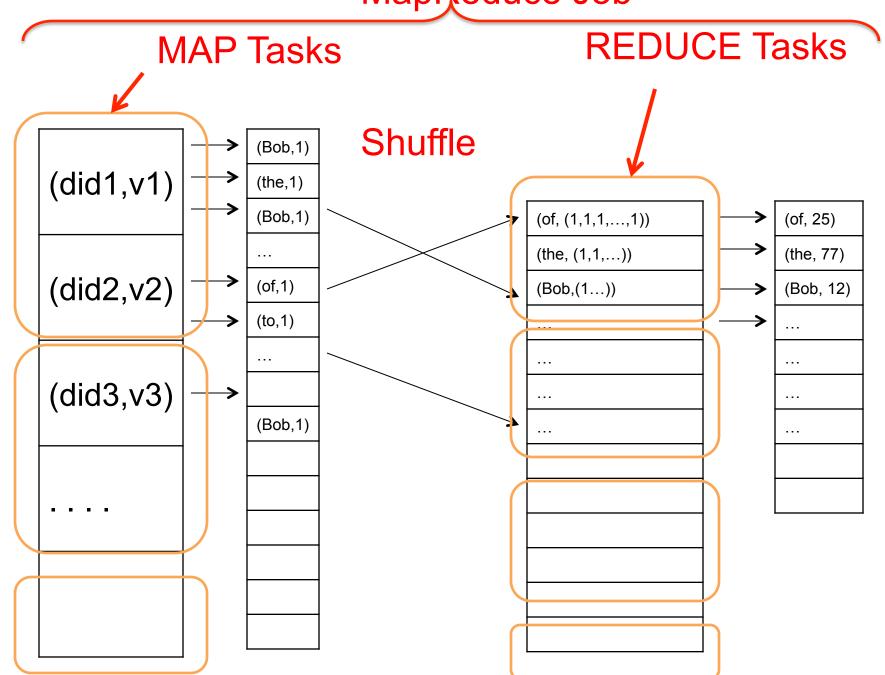

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

```
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");
```

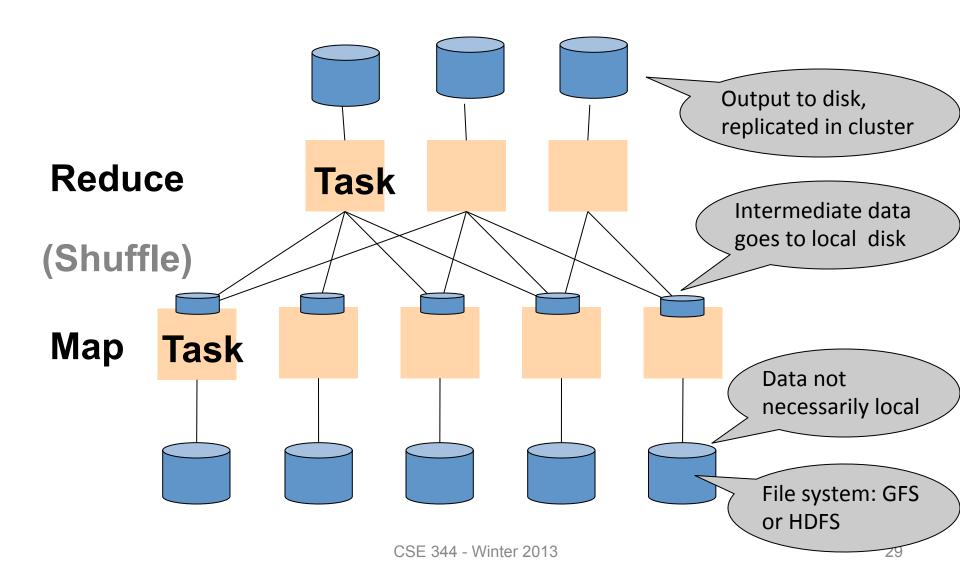
```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```

MAP

REDUCE

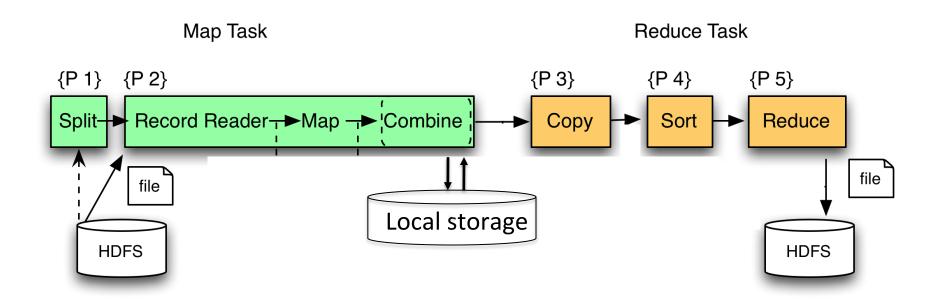

Jobs v.s. Tasks

- A MapReduce Job
 - One single "query", e.g. count the words in all docs
 - More complex queries may consists of multiple jobs
- A Map Task, or a Reduce Task
 - A group of instantiations of the map-, or reducefunction, which are scheduled on a single worker


Workers

- A worker is a process that executes one task at a time
- Typically there is one worker per processor, hence 4 or 8 per node

MapReduce Job



MapReduce Execution Details

MR Phases

Each Map and Reduce task has multiple phases:

Example: CloudBurst

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M
 map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers' local disks

Interesting Implementation Details

Worker failure:

Master pings workers periodically,

If down then reassigns the task to another worker

Interesting Implementation Details

Backup tasks:

- Straggler = a machine that takes unusually long time to complete one of the last tasks.
 Eg:
 - Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

MapReduce Summary

Hides scheduling and parallelization details

- However, very limited queries
 - Difficult to write more complex queries
 - Need multiple MapReduce jobs

Solution: declarative query language

Declarative Languages on MR

- PIG Latin (Yahoo!)
 - New language, like Relational Algebra
 - Open source
- HiveQL (Facebook)
 - SQL-like language
 - Open source
- SQL / Dremmel / Tenzing (Google)
 - SQL on MR
 - Proprietary

Parallel DBMS vs MapReduce

Parallel DBMS

- Relational data model and schema
- Declarative query language: SQL
- Many pre-defined operators: relational algebra
- Can easily combine operators into complex queries
- Query optimization, indexing, and physical tuning
- Streams data from one operator to the next without blocking
- Can do more than just run queries: Data management
 - Updates and transactions, constraints, security, etc.

Parallel DBMS vs MapReduce

MapReduce

- Data model is a file with key-value pairs!
- No need to "load data" before processing it
- Easy to write user-defined operators
- Can easily add nodes to the cluster (no need to even restart)
- Uses less memory since processes one key-group at a time
- Intra-query fault-tolerance thanks to results on disk
- Intermediate results on disk also facilitate scheduling
- Handles adverse conditions: e.g., stragglers
- Arguably more scalable... but also needs more nodes!

Pig Latin Mini-Tutorial

(will not discuss in class; please read in order to do homework 8)

Pig Latin Overview

- Data model = loosely typed nested relations
- Query model = a SQL-like, dataflow language

- Execution model:
 - Option 1: run locally on your machine; e.g. to debug
 - In HW6, debug with option 1 directly on Amazon
 - Option 2: compile into graph of MapReduce jobs, run on a cluster supporting Hadoop

Example

- Input: a table of urls: (url, category, pagerank)
- Compute the average pagerank of all sufficiently high pageranks, for each category
- Return the answers only for categories with sufficiently many such pages

Page(url, category, pagerank)

First in SQL...

SELECT category, AVG(pagerank)
FROM Page

WHERE pagerank > 0.2

GROUP BY category

HAVING COUNT(*) $> 10^6$

Page(url, category, pagerank)

...then in Pig-Latin

```
good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups
BY COUNT(good_urls) > 10<sup>6</sup>
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank)
```

Types in Pig-Latin

Atomic: string or number, e.g. 'Alice' or 55

Tuple: ('Alice', 55, 'salesperson')

Bag: {('Alice', 55, 'salesperson'), ('Betty',44, 'manager'), ...}

Maps: we will try not to use these

Types in Pig-Latin

Tuple components can be referenced by number

• \$0, \$1, \$2, ...

Bags can be nested! Non 1st Normal Form

• {('a', {1,4,3}), ('c',{}), ('d', {2,2,5,3,2})}

$$t = \begin{pmatrix} \text{`alice'}, \left\{ \begin{array}{c} \text{('lakers', 1)} \\ \text{('iPod', 2)} \end{array} \right\}, \left[\text{`age'} \rightarrow 20 \right] \end{pmatrix}$$

Let fields of tuple t be called f1, f2, f3

Expression Type	Example	Value for t
Constant	'bob'	Independent of t
Field by position	\$0	'alice'
Field by name	f3	'age' → 20
Projection	f2.\$0	{ ('lakers') } ('iPod') }
Map Lookup	f3#'age'	20
Function Evaluation	SUM(f2.\$1)	1 + 2 = 3
Conditional Expression	f3#'age'>18? 'adult':'minor'	'adult'
Flattening	FLATTEN(f2)	'lakers', 1 'iPod', 2

Loading data

- Input data = FILES!
 - Heard that before ?

- The LOAD command parses an input file into a bag of records
- Both parser (="deserializer") and output type are provided by user

For HW6: simply use the code provided

Loading data

```
queries = LOAD 'query_log.txt'
        USING myLoad( )
        AS (userID, queryString, timeStamp)
```

Pig provides a set of built-in load/store functions

A = LOAD 'student' USING PigStorage('\t') AS (name: chararray, age:int, gpa: float); same as

A = LOAD 'student' AS (name: chararray, age:int, gpa: float);

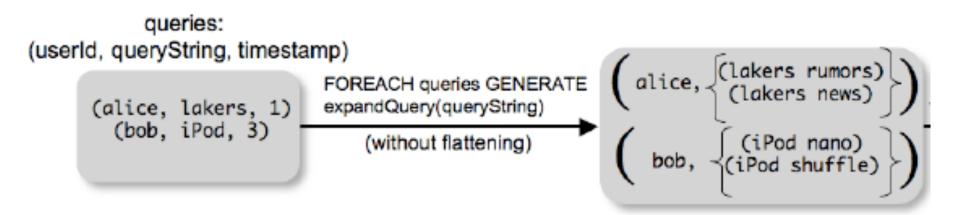
Loading data

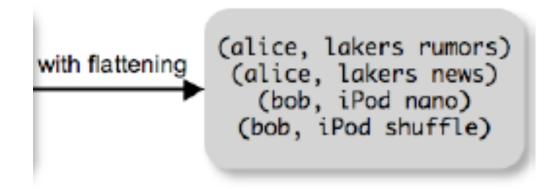
- USING userfuction() -- is optional
 - Default deserializer expects tab-delimited file

- AS type is optional
 - Default is a record with unnamed fields; refer to them as \$0, \$1, ...
- The return value of LOAD is just a handle to a bag
 - The actual reading is done in pull mode, or parallelized

FOREACH

expanded_queries =
 FOREACH queries
 GENERATE userId, expandQuery(queryString)


expandQuery() is a UDF that produces likely expansions Note: it returns a bag, hence expanded_queries is a nested bag


FOREACH

```
expanded_queries =
FOREACH queries
GENERATE userId,
flatten(expandQuery(queryString))
```

Now we get a flat collection

[Olston'2008]

FLATTEN

Note that it is NOT a normal function! (that's one thing I don't like about Pig-latin)

- A normal FLATTEN would do this:
 - $FLATTEN({(2,3),(5),(4,5,6)}) = {(2,3,5,4,5,6)}$
 - Its type is: $\{\{T\}\} \rightarrow \{T\}$
- The Pig Latin FLATTEN does this:
 - $-FLATTEN({4,5,6}) = 4, 5, 6$
 - What is its Type? $\{T\} \rightarrow T, T, T, ..., T$??????

FILTER

Remove all queries from Web bots:

real_queries = FILTER queries BY userId neq 'bot'

Better: use a complex UDF to detect Web bots:

```
real_queries = FILTER queries
BY NOT isBot(userId)
```

JOIN

```
results: {(queryString, url, position)}
```

revenue: {(queryString, adSlot, amount)}

```
join_result = JOIN results BY queryString revenue BY queryString
```

join_result: {(queryString, url, position, adSlot, amount)}

[Olston'2008]

```
results:
   (queryString, url, rank)
  (lakers, nba.com, 1)
  (lakers, espn.com, 2)
   (kings, nhl.com, 1)
   (kings, nba.com, 2)
         revenue:
(queryString, adSlot, amount)
                                         (lakers, nba.com, 1, top , 50)
     (lakers, top, 50)
                                        (lakers, nba.com, 1, side, 20)
    (lakers, side, 20)
                                         (lakers, espn.com, 2, top, 50)
      (kings, top, 30)
                                        (lakers, espn.com, 2, side, 20)
                            JOIN
     (kings, side, 10)
```

GROUP BY

revenue: {(queryString, adSlot, amount)}

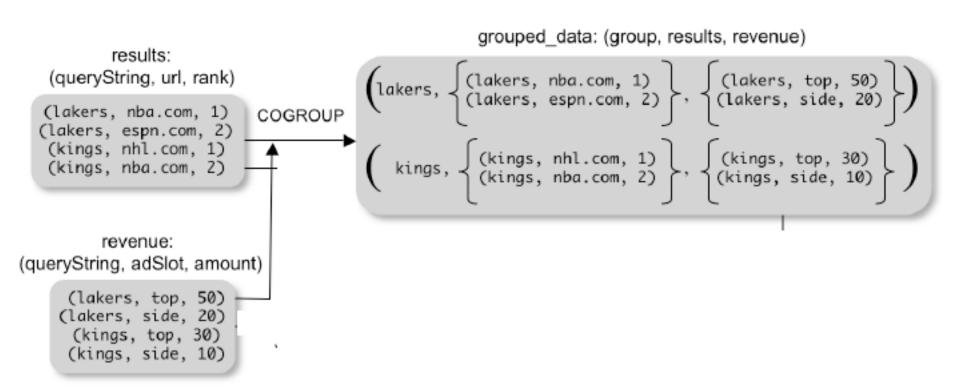
```
grouped_revenue = GROUP revenue BY queryString
query_revenues =
FOREACH grouped_revenue
GENERATE queryString,
SUM(revenue.amount) AS totalRevenue
```

grouped_revenue: {(queryString, {(adSlot, amount)})} query_revenues: {(queryString, totalRevenue)}

Simple MapReduce

```
map_result : {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}
```

Co-Group


results: {(queryString, url, position)}

revenue: {(queryString, adSlot, amount)}

```
grouped_data = COGROUP results BY queryString, revenue BY queryString;
```

What is the output type in general?

Co-Group

Is this an inner join, or an outer join?

Co-Group

```
grouped_data: {(queryString, results:{(url, position)}, revenue:{(adSlot, amount)})}
```

distributeRevenue is a UDF that accepts search results and revenue information for a query string at a time, and outputs a bag of urls and the revenue attributed to them.

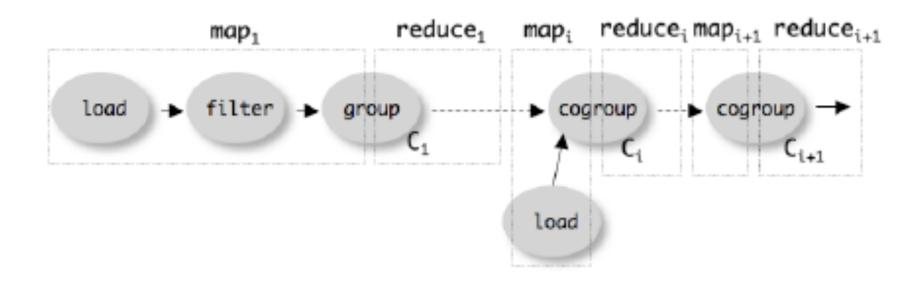
Co-Group v.s. Join

```
grouped_data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);
```

Result is the same as JOIN

Asking for Output: STORE

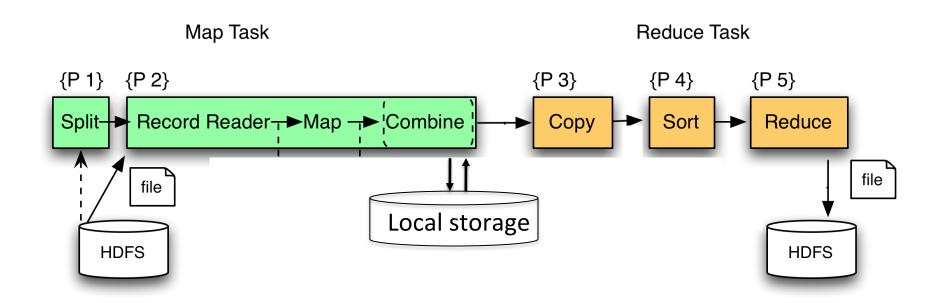
STORE query_revenues INTO `myoutput' USING myStore();


Meaning: write query_revenues to the file 'myoutput'

Implementation

- Over Hadoop!
- Parse query:
 - Everything between LOAD and STORE → one logical plan
- Logical plan -> graph of MapReduce ops
- All statements between two (CO)GROUPs
 - → one MapReduce job

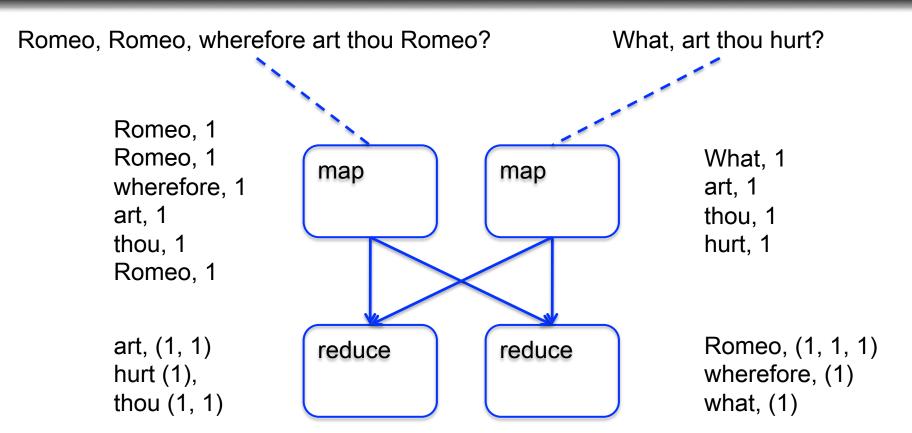
[Olston'2008]


Implementation

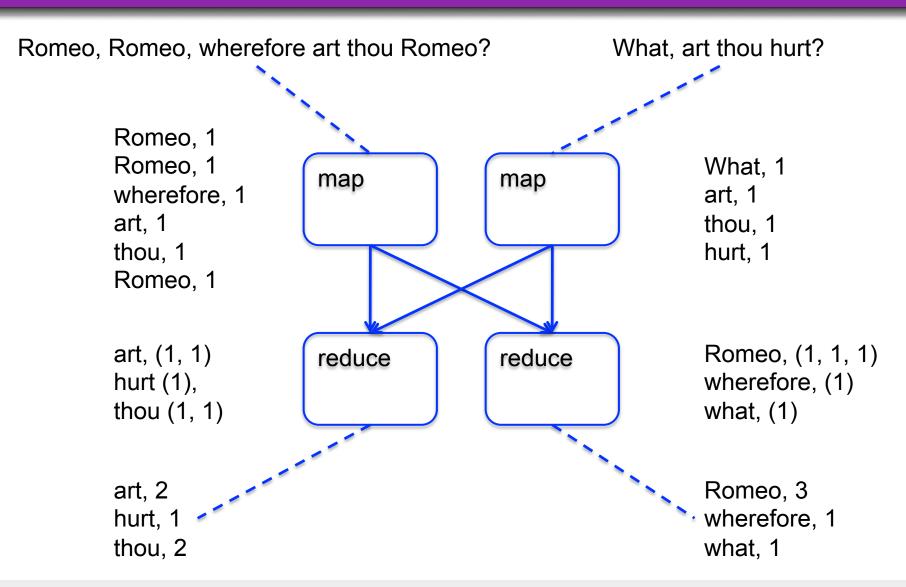
Review: MapReduce

- Data is typically a file in the Google File System
 - HDFS for Hadoop
 - File system partitions file into chunks
 - Each chunk is replicated on k (typically 3) machines
- Each machine can run a few map and reduce tasks simultaneously
- Each map task consumes one chunk
 - Can adjust how much data goes into each map task using "splits"
 - Scheduler tries to schedule map task where its input data is located
- Map output is partitioned across reducers
- Map output is also written locally to disk
- Number of reduce tasks is configurable
- System shuffles data between map and reduce tasks
- Reducers sort-merge data before consuming it

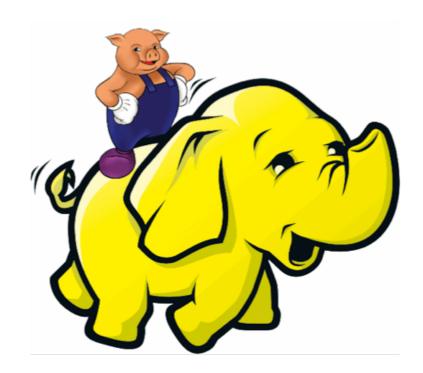
MapReduce Phases



Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt? map map reduce reduce

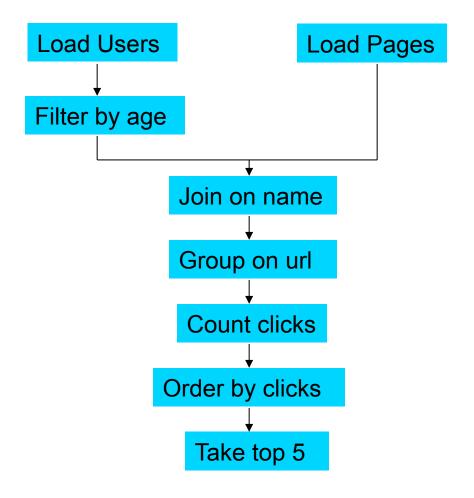


Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt? Romeo, 1 Romeo, 1 What, 1 map map art, 1 wherefore, 1 art, 1 thou, 1 hurt, 1 thou, 1 Romeo, 1 reduce reduce


Making Parallelism Simple

- Sequential reads = good read speeds
- In large cluster failures are guaranteed; MapReduce handles retries
- Good fit for batch processing applications that need to touch all your data:
 - data mining
 - model tuning
- Bad fit for applications that need to find one particular record
- Bad fit for applications that need to communicate between processes; oriented around independent units of work

What is Pig?


- An engine for executing programs on top of Hadoop
- It provides a language, Pig Latin, to specify these programs
- An Apache open source project <u>http://hadoop.apache.org/pig/</u>

Why use Pig?

Suppose you have user data in one file, website data in another, and you need to find the top 5 most visited sites by users aged 18 - 25.

In MapReduce

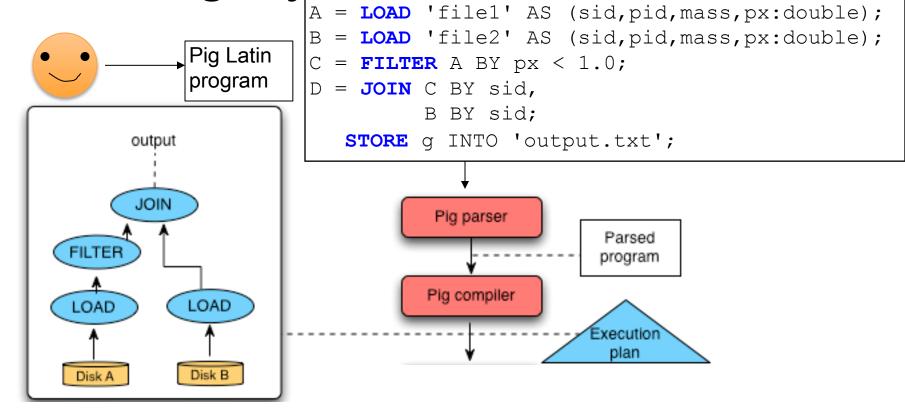
```
import java.io.IOException
                        java.util.ArrayList;
java.util.Iterator;
 import java.util.List:
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
 import org.apache.hadoop.mapred.vtputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.Job;
 import org.apache.hadoop.mapred.lib.IdentityMapper:
public class MRExample {
   public static class LoadPages extends MapReduceBase
                            implements Mapper<LongWritable, Text, Text, Text> {
                             public void map(LongWritable k, Text val,
                                          lic void map(LongWritable K, Text val,
Control LectorFeath (Control Control Co
                                            // it came from.
Text outVal = new Text("1" + value);
oc.collect(outKey, outVal);
                , public static class LoadAndFilterUsers extends MapReduceBase
                               implements Mapper<LongWritable, Text, Text, Text> {
                              public void map(LongWritable k, Text val,
                                          String key = Intersubstring(), firstComman;
Text outKey = new Text(key);
// Prepend an index to the value so we know which file
// it came from.
Text outVal = new Text("2" + value);
                                            oc.collect(outKey, outVal);
               public static class Join extends MapReduceBase
                              implements Reducer<Text, Text, Text, Text> {
                                                         Iterator<Text> iter,
                                                         OutputCollector<Text, Text> oc.
                                          Reporter reporter) throws IOException {
// For each value, figure out which file it's from and
                                          // accordingly.
List<String> first = new ArrayList<String>();
List<String> second = new ArrayList<String>();
                                            while (iter.hasNext()) {
                                                       Text t = iter.next();
String value = t.toString();
if (value.charAt(0) == '1')
first.add(value.substring(1));
                                                         else second.add(value.substring(1));
```

```
reporter.setStatus("OK");
                        // Do the cross product and collect the values
                       // Do the cross product and collect the value
for (String al : first) {
  for (String s2 : second) {
    String outval = key + "," + sl + ","
    oc.collect(null, new Text(outval));
    reporter.setStatus("OK");
        public static class LoadJoined extends MapReduceBase
  implements Mapper<Text, Text, Text, LongWritable> {
                 public void map(
                              Text k,
Text val,
OutputCollector<Text, LongWritable> oc,
                       OutputCollector=Text, LongWritable> oc,
Reporter reporter) throws loException {

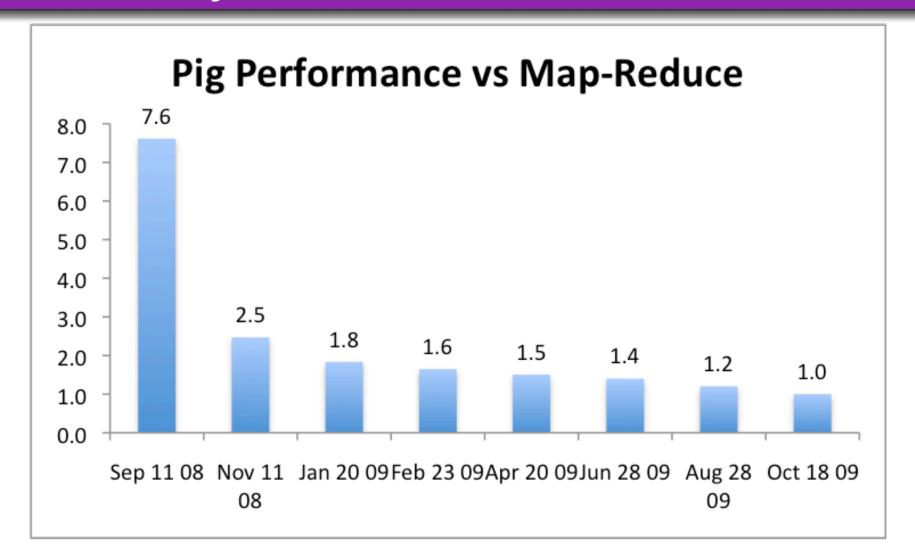
// String line = val.toString();
int firstComma = line.indexOf(',');
int secondComma = line.indexOf(',');
int secondComma = line.indexOf(',');
// drop the rest of the record, I don't need it anymore,
// just pass a 1 for the combiner/reducer to sum instead.
Text outkey = new Text(key);
                        oc.collect(outKey, new LongWritable(1L));
        public static class ReduceUrls extends MapReduceBase
                implements Reducer<Text, LongWritable, WritableComparable,
Writable> {
                               Text key,
Iterator<IongWritable> iter,
OutputCollector<WritableComparable, Writable> oc,
Reporter reporter) throws IOException {
                       // Add up all the values we see
                         while (iter.hasNext()) {
                               sum += iter.next().qet();
                               reporter.setStatus("OK")
                       oc.collect(kev, new LongWritable(sum));
        public static class LoadClicks extends MapReduceBase
               implements Mapper<WritableComparable, Writable, LongWritable,
                writable val,
Writable val,
OutputCollector<LongWritable, Text> oc,
Reporter reporter) throws IOException {
oc.collect((LongWritable)val, (Text)key);
        public static class LimitClicks extends MapReduceBase
   implements Reducer<LongWritable, Text, LongWritable, Text> {
                int count = 0:
                public void reduce(
LongWritable key,
Iterator<Text> iter,
                        OutputCollector<LongWritable, Text> oc.
                        Reporter reporter) throws IOException {
                        // Only output the first 100 records
                       while (count < 100 && iter.hasNext()) {
  oc.collect(key, iter.next());
  count++;</pre>
       }
public static void main(String[] args) throws IOException {
   JobConf lp = new JobConf(MEExample.class);
   lp.setJobName("Load Pages");
   lp.setInputFormat(TextInputFormat.class);
```

```
lp.setOutputKeyClass(Text.class);
lp.setOutputValueClass(Text.class);
lp.setMapperClass(LoadPages.class);
                        FileInputFormat.addInputPath(lp, new
  lp.setNumReduceTasks(0);
                          Job loadPages = new Job(lp);
                          JobConf lfu = new JobConf(MRExample.class);
                        JobCont fur = new JobCont(MREXAmple.class);
Ifu.setJobName("Load and Filter Users");
Ifu.setJoputFormat(TextInputFormat.class);
Ifu.setJoputputKeyClass(Text.class);
Ifu.setOutputKeyClass(Text.class);
Ifu.setOutputFormat.class(LoadAndFilterUsers.class);
  FileInputFormat.addInputFath(lfu, new Path("/user/gates/users"));
FileOutputFormat.setOutputPath(lfu, new Path("/user/gates/tmp/filtered_users"));
                         lfu.setNumReduceTasks(0);
Job loadUsers = new Job(lfu);
                        JobConf join = new JobConf(MEExample.class);
join.setJobHame("Join Users and Peges");
join.setInputFormat(KeyValueTextInputFormat.class);
join.setOutputKeyClass(Text.class);
join.setOutputKeyClass(Text.class);
join.setMapperClass(IdentityMapper.class);
join.setMapperClass(IdentityMapper.class
join.setReducerClass(Join.class);
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexd_pages"));
FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
FileOutputFormat.setOutputPath(join, new
Path("/user/gates/tmp/joined"));
Join.setNumReduceTaska(50);
Job joinJob - new Job(join);
                          joinJob.addDependingJob(loadPages)
joinJob.addDependingJob(loadUsers)
                          JobConf group = new JobConf(MRExample.class):
                        JobConf group = new JobConf(MREXample.class);
group.setJobName("Group URLs");
group.setJobName("Group URLs");
group.setJobName("Group URLs");
group.setOutputValueClass(LongWritable.class);
group.setOutputValueClass(LongWritable.class);
group.setOutputFormat(SequenceFileOutputFormat.class);
group.setMapperClass(LondJoined.class);
group.setCombinerClass(ReduceUrls.class);
group.setAeducerClass(ReduceUrls.class);
  FileInputFormat.addInputPath(group, new Path("/user/gates/tmp/joined")); FileOutputFormat.setOutputPath(group, new
  Path("/user/gates/tmp/grouped"));
                          group.setNumReduceTasks(50);
Job groupJob = new Job(group)
                          groupJob.addDependingJob(joinJob);
                          JobConf top100 = new JobConf(MRExample.class);
                        JobConf top100 = new JobConf(MRExample.class);
top100.setJobName("Top 100 sites");
top100.setInputFormat(SequenceFileInputFormat.class);
top100.setContputFormat(SequenceFileOptFormat.class);
top100.setOutputFormat(SequenceFileOutputFormat.class);
top100.setOutputFormat(SequenceFileOutputFormat.class);
top100.setCombinerClass(ItAmitClicks.class);
top100.setCombinerClass(ItAmitClicks.class);
 FileInputFormat.addInputPath(top100, new Path("/user/gates/tmp/grouped")); FileOutputFormat.setOutputPath(top100, new Path("/user/gates/top100sitesforusers18to25"));
                          top100.setNumReduceTasks(1):
                          Job limit = new Job(top100);
limit.addDependingJob(groupJob);
                        JobControl jc = new JobControl("Find top 100 sites for users
 18 to 25");
ic.addJob(loadPages);
                          jc.addJob(loadUsers);
                          ic.addJob(ioinJob):
                          jc.addJob(groupJob);
jc.addJob(limit);
jc.run();
```

170 lines of code, 4 hours to write


In Pig Latin

```
Users = load 'users' as (name, age);
Fltrd = filter Users by
        age >= 18 and age <= 25;
Pages = load 'pages' as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
       COUNT (Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into 'top5sites';
```


9 lines of code, 15 minutes to write

Pig System Overview

But can it fly?

