Introduction to Data Management
CSE 344

Lecture 23: Transactions

CSE 344 - Winter 2013



Announcements
« HWOG is due tonight

 Webquiz due next Monday

« HWY is posted:

— Some Java programming required
— Plus connection to SQL Azure
— Please attend the quiz section for more info!

CSE 344 - Winter 2013



Outline
« Serial and Serializable Schedules (18.1)

« Conflict Serializability (18.2)

* Locks (18.3) [Start today and finish next time]

CSE 344 - Winter 2013



Review: Transactions

* Problem: An application must perform several
writes and reads to the database, as a unit

« Solution: multiple actions of the application are
bundled into one unit called Transaction

« Turing awards to database researchers
— Charles Bachman 1973 for CODASYL
— Edgar Codd 1981 for relational databases

— Jim Gray 1998 for transactions
CSE 344 - Winter 2013 4



Review: TXNs in SQL

BEGIN TRANSACTION
[SQL statements]

COMMIT or

ROLLBACK (=ABORT)

usin@e SQL statement]_

If BEGIN... missing,

then TXN consists
of a single instruction

CSE 344 - Winter 2013



Review: ACID

Atomic
— State shows either all the effects of txn, or none of them
Consistent

— Txn moves from a state where integrity holds, to
another where integrity holds

|solated

— Effect of txns is the same as txns running one after
another (ie looks like batch mode)

Durable
— Once a txn has committed, its effects remain in the
database

CSE 344 - Winter 2013 6



Implementing ACID Properties

|solation:
— Achieved by the concurrency control manager (or scheduler)
— Discussed briefly in 344 today and in the next lecture
— Discussed more extensively in 444
Atomicity
— Achieved using a log and a recovery manager
— Discussed in 444
Durability
— Implicitly achieved by writing back to disk

Consistency
.. Last two properties
— Implicitly guaranteed by A ahd I implied by the first two
CSE 344 - Winter 2013




|Isolation: The Problem

Multiple transactions are running concurrently
T, T, ...

They read/write some common elements
A, A, ...

How can we prevent unwanted interference ?
The SCHEDULER is responsible for that

CSE 344 - Winter 2013



Schedules

A schedule I1s a sequence
of interleaved actions
from all transactions

CSE544 - Spring, 2012




/A and B are elements

In the database

Examp|e t and s are variables

wurce code -
T1 T2

READ(A,t) READ(A, s)
t:=t+100 S :=8%2
WRITE(A, 1) WRITE(A,s)
READ(B,t) READ(B,s)
t:=t+100 S :=8%2
WRITE(B,t) WRITE(B,s)

CSE 344 - Winter 2013 10



A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A,s)
S :=8%2
WRITE(A,s)
READ(B,s)
S :=8%2

WRITE(B,s)

CSE 344 - Winter 2013 11



Serializable Schedule

A schedule is serializable if it is
equivalent to a serial schedule

CSE544 - Spring, 2012

12



A Serializable Schedule

T1 T2
READ(A, t)
t:=t+100
WRITE(A, t)
READ(A,s)
S =82
WRITE(A,s)
READ(B, t)
t:=t+100
WRITE(B,1)
READ(B,s)
This is a serializable schedule. S = 8%2

This is NOT a serial schedule WRITE(B,s)

CSE 344 - Winter 2013 13



A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
S =82
WRITE(A,s)
READ(B,s)
S =82
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,t)

CSE 344 - Winter 2013

14



How do We Know if a Schedule
IS Serializable?

Notation

T r1(A); wy(A); ry(B); w,
T,: 1y(A); Wy(A); r(B); wo

N N

Key ldea: Focus on conflicting operations

CSE 344 - Winter 2013 15



Conflicts

 Write-Read — WR
e Read-Write — RW
e Write-Write — WW

CSE544 - Spring, 2012

16



Conflict Serializability

Conflicts:

Two actions by same transaction T;: r(X); wi(Y)

Two writes by T, T, to same element w;(X); wi(X)
X); r(X
Read/write by T, T, to same element WiX); (%)
ri(X); Wi(X)

CSE 344 - Winter 2013 17



Conflict Serializability

« A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

» Every conflict-serializable schedule is serializable

* A serializable schedule may not necessarily be
conflict-serializable

CSE 344 - Winter 2013 18



Conflict Serializability

Example:

r1(A); wy(A); ry(A); wo(A); ri(B); wy(B); ry(B); wy(B)

CSE 344 - Winter 2013

19



Conflict Serializability

Example:
r1(A); Wy(A); ra(A); wy(A); r(B); wy(B); ry(B); w,(B)

ri(A); wi(A); r;(B); wi(B); ra(A); Wo(A); 1r(B); wo(B)

CSE 344 - Winter 2013 20



Conflict Serializability

Example:

ri(A); Wi(A); ro(A);

W,(A); r,(B);

w,(B); r,(B); w,(B)

ri(A); wi(A); r;(B); wi(B); ra(A); Wo(A); 1r(B); wo(B)

CSE 344 - Winter 2013 21



Conflict Serializability

Example:

ri(A); Wi(A); ro(A);

W,(A); r,(B);

w,(B); r,(B); w,(B)

ri(A); wi(A); r1(B); wi(B); ra(A); Wo(A); 1r(B); wo(B)

CSE 344 - Winter 2013 22



Conflict Serializability

Example:

ri(A); Wi(A); ro(A);

| W4(B); r2(B); wy(B)

ri(A); wi(A); r1(B); wi(B); ra(A); Wo(A); 1r(B); wo(B)

CSE 344 - Winter 2013 23



Testing for Conflict-Serializability

Precedence graph:
* A node for each transaction T,

* An edge from T, to T, whenever an action in
T, conflicts with, and comes before an action
|n T

* The schedule is serializable iff the
precedence graph is acyclic

CSE544 - Spring, 2012 24



Example 1

r)(A); 11(B); Wy(A); r3(A); w,(B); wi(A); ry(B); wy(B)

v @ 3

CSEb544 - Spring, 2012 25



Example 1

N

r)(A); 11(B); Wo(A); r3(A); wy(B); wi(A); rx(B); wo(B)

This schedule is conflict-serializable

CSEb544 - Spring, 2012 26




Example 2

r(A); 11(B); Wo(A); r(B); r3(A), w(B);, wa(A); wo(B)

RN E) 3)

CSEb544 - Spring, 2012 27



Example 2

T

r(A); 11(B); Wo(A); r(B); r3(A), w(B);, wa(A); wo(B)

This schedule is NOT conflict-serializable

CSEb544 - Spring, 2012 28




Scheduler

 Scheduler = is the module that schedules the
transaction’s actions, ensuring serializabilit

 Also called Concurrency Control Manager

* We discuss next how a scheduler may be
implemented



Implementing a Scheduler

Major differences between database vendors
* Locking Scheduler

— Aka “pessimistic concurrency control”
— SQLite, SQL Server, DB2

* Multiversion Concurrency Control (MVCC)
— Aka “optimistic concurrency control”
— Postgres, Oracle

We discuss only locking in 344



Locking Scheduler

Simple idea:
 Each element has a unique lock

« Each transaction must first acquire the lock
before reading/writing that element

* If the lock is taken by another transaction,
then wait

* The transaction must release the lock(s)

By using locks scheduler ensures conflict-serializability



What Data Elements are Locked?

Major differences between vendors:

 Lock on the entire database
— SQLite

 Lock on individual records
— SQL Server, DB2, etc

CSE 344 - Winter 2013 32



Let's Study SQLite First

« SQLite is very simple
* More info: http://www.sqlite.org/atomiccommit.html

CSE 344 - Winter 2013 33



SQLite

Step 1: when a transaction begins

* Acquire a READ LOCK (aka "SHARED" lock)
« All these transactions may read happily
* They all read data from the database file

* If the transaction commits without writing
anything, then it simply releases the lock



SQLite

Step 2: when one transaction wants to write
* Acquire a RESERVED LOCK
« May coexists with many READ LOCKs

* Writer TXN may write; these updates are only in
main memory; others don't see the updates

« Reader TXN continue to read from the file
 New readers accepted
 No other TXN is allowed a RESERVED LOCK



SQLite

Step 3: when writer transaction wants to commit,
It needs exclusive lock, which can’t coexists with
read locks

+ Acquire a PENDING LOCK Why not write
isk right now?
« May coexists with old READ LOCKs

 No new READ LOCKS are accepted
 Wait for all read locks to be released

CSE 344 - Winter 2013 36



SQLite

Step 4: when all read locks have been released
* Acquire the EXCLUSIVE LOCK
* Nobody can touch the database now

* All updates are written permanently to the
database file

 Release the lock and COMMIT

CSE 344 - Winter 2013 37



SQLite

begin transaction first write commit requested no more read locks

READ 2
LOCK

commit executed

CSE 344 - Winter 2013 38



SQLite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

CSE 344 - Winter 2013

39



Demonstrating Locking in SQLite

T1:

begin transaction;

select * from r;

-- T1 has a READ LOCK
T2:

begin transaction;

select * from r;

-- T2 has a READ LOCK

CSE 344 - Winter 2013

40



Demonstrating Locking in SQLite

T1:
update r set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:

update r set b=21 where a=2;
-- T2 asked for a RESERVED LOCK: DENIED

CSE 344 - Winter 2013 41



Demonstrating Locking in SQLite

T3:
begin transaction;
select * from r;

commit;
-- everything works fine, could obtain READ LOCK

CSE 344 - Winter 2013 42



Demonstrating Locking in SQLite

T1:
commit;
-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED
-- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 344 - Winter 2013 43



Demonstrating Locking in SQLite

T3"
begin transaction;
select * fromr;
-- T3 asked for READ LOCK-- DENIED (due to T1)

T2:
commit;
-- releases the last READ LOCK

CSE 344 - Winter 2013 44



Some Famous Anomalies

* What could go wrong if we didn’t have
concurrency control:

— Dirty reads (including inconsistent reads)
— Unrepeatable reads
— Lost updates

Many other things can go wrong too

CSE 344 - Winter 2013

45



Dirty Reads

Write-Read Conflict

T,. WRITE(A)
T,: READ(A)

T,: ABORT

CSE 344 - Winter 2013

46



Inconsistent Read

Write-Read Conflict

T, A:=20; B :=20;
T, WRITE(A)

T,: WRITE(B)

T,: READ(A);
T,: READ(B):

CSE 344 - Winter 2013

47



Unrepeatable Read

Read-Write Conflict

T,. READ(A);

T,. WRITE(A)

T,: READ(A);

CSE 344 - Winter 2013

48



Lost Update

Write-Write Conflict

T,: READ(A)

T,: READ(A);
T, :A=A+5

T,-A=A"13
T,: WRITE(A)

T,: WRITE(A);

CSE 344 - Winter 2013

49



