
==
CSE 344 -- Winter 2013
Lecture 22: Transactions

==
1 - MOTIVATION FOR TRANSACTIONS

-- Run sqlite3 txn.db in terminal 1 -- this is User 1
-- Run sqlite3 txn.db in terminal 2 -- this is User 2

-- Run the following for User 1:
.headers on
.mode columns

create table Flights(seat int, status int);

insert into Flights values(22,0); -- seat 22 is available
insert into Flights values(23,1); -- seat 23 is occupied
insert into Flights values(24,0);
insert into Flights values(25,0);
insert into Flights values(26,1);

-- User 1 and User 2 want to choose a seat, at about the same time:

-- User 1:
select * from Flights where status = 0;

-- User 2:
.headers on
.mode columns
select * from Flights where status = 0;

-- User 1: seat 22 is available, grab it:
update Flights set status = 1 where seat = 22;

-- User 2: seat 22 is available, grab it:
update Flights set status = 1 where seat = 22;

-- *** In class: what is wrong ?

The challenge:
- For performance, want to execute many
 applications concurrently. All
 these applications read and write data.
- But for correctness, multiple operations
 often need to be executed as an atomic
 transaction over the database.

Other possible problems when executing two
applications concurrently that read and write
to the same database:

-- Write-Read conflict ("Dirty read" or "Inconsistent Read")

-- One application is in the middle of performing some changes:
-- (a) A Manager is re-balancing budget and is moving

-- money between projects:
-- Step 1: Remove $10K from project 1
-- Step 2: Add $7K to project 2
-- Step 3: Add $3k to project 3
--
-- (b) The CEO wants to see the total balance and runs: "select sum(money) from Budg
et"
-- The CEO sees "inconsistent" data
--
-- Worse if the first application aborts in the middle of a change:
-- Husband deposits $100 check but pretends like its $1M
-- System will detect the problem and will stop the deposit
--
-- BUT what if the wife withdraws $1M from ATM next door at the same time?
-- If this application manages to see the "dirty" $1M value... the bank is in troubl
e.

-- Read-write conflict

-- An application reads the value of some database item: e.g., inventory.
-- Another application updates that value: e.g., someone else buys the
-- last book and now the inventory is zero.
-- The first application re-reads the value and finds that it has
-- changed... the inventory is now at zero.
-- This is called "Unrepeatable read".

-- Write-write conflict ("Lost update")

-- Account 1 = $100
-- Account 2 = $100
-- Total = $200
--
-- Application 1 writes $200 to account 1 (without reading its balance).
-- Application 1 writes $0 to account 2
--
-- Application 2 writes $200 to account 2
-- Application 2 writes $0 to account 1
--
-- Final state: one account has $200, the other one has $0
-- Total = $200 (unchanged)
--
-- What if the applications executed concurrently:
-- Application 1 writes $200 to account 1
-- Application 2 writes $200 to account 2
-- Application 1 writes $0 to account 2
-- Application 2 writes $0 to account 1
--
-- Where did the money go?

--That's not all! What if a failure happens while an application
--is updating the database? This can also create problems:
--e.g., What if your browser crashes while you are purchasing a $1K gift
--for your pet? What do you do?

==
2 - Definitions and Properties

-- Transaction = a collection of statements that are executed atomically

begin transaction;
-- . . .
commit; -- or rollback;

-- Rerun the first example as follows:

-- Run the following for User 1:
.headers on
.mode columns
drop table Flights;
create table Flights(seat int, status int);
insert into Flights values(22,0); -- seat 22 is available
insert into Flights values(23,1); -- seat 23 is occupied
insert into Flights values(24,0);
insert into Flights values(25,0);
insert into Flights values(26,1);

-- User 1 and User 2 want to choose a seat, at about the same time:
-- User 1:
begin transaction;

-- User 2:
.headers on
.mode columns
begin transaction;

-- User 1:
select * from flights;

-- User 2:
select * from flights;

-- User 1:
update flights set status = 1 where seat = 22;

-- User 2:
update flights set status = 1 where seat = 22; -- DENIED !!

-- User 2:
commit; -- (or rollback) CAN'T ASSIGN SEAT

-- User 1:
commit;

-- Definition: a SERIAL execution of the transactions is one in which
 transactions are executed one after the other, in serial order

-- Fact: nothing can go wrong if the system executes transactions serially

-- *** In Class: the database system could execute all transactions
-- serially, but it doesn't do that. WHY NOT ?

-- Definition: a SERIALIZABLE execution of the transactions is one
-- that is equivalent to a serial execution

-- *** In class: repeat the two transactions by user 1 and 2, but
-- switch the commit order. That is, user 1 commits while user 2
-- continues the transaction. But user 1 receives an error when
-- attempting to commit. WHY ???

-- sqlite ensures serializable execution of transactions, but may have
 to abort some of them in order to do that

-- WARNING: You can see somewhat different behaviors with different DBMSs (more next l
ecture).

-- ACID Properties:

-- A DBMS guarantees the following properties of transactions:
-- (we will see next lecture that we can relax these properties a bit
-- to get higher performance)
--
-- - Atomic
-- State shows either all the effects of txn, or none of them
--
-- - Consistent
-- Txn moves from a state where integrity holds, to another where integrity holds
--
-- - Isolated
-- Effect of txns is the same as txns running one after another (ie looks like batch
 mode)
--
-- - Durable
-- Once a txn has committed, its effects remain in the database

-- ACID: Atomicity
--
-- Definition: each transaction is ATOMIC meaning that all its updates
-- must happen or not at all. Important for recovery and if
-- we need to abort a transaction in the middle.
--
-- Example: move $100 from account 1 to account 2
--
-- update Accounts
-- set balance = balance - 100
-- where account = 1
--
-- update Accounts
-- set balance = balance +100
-- where account = 2
--
-- If the system crashes between the two updates, then we are in trouble.
--
-- begin transaction
-- update Accounts
-- set balance = balance - 100
-- where account = 1
--
-- update Accounts
-- set balance = balance +100

-- where account = 2
-- commit
--
-- Now all updates happen atomically, when the commit is done.
--
-- begin transaction
--
-- read the balance in account 1
-- if (balance < 100) ROLLBACK // Any update already performed is undone
-- else
-- update the two bank accounts
-- ...
--
-- commit
--
--
-- ---
-- ACID: Consistency
--
-- The state of the tables is restricted by integrity constraints
--
-- How consistency is achieved:
-- – Programmer makes sure a txn takes a consistent
-- state to a consistent state
-- – The system makes sure that the tnx is atomic
--
-- When defining integrity constraints, it is possible to specify
-- whether constraints can be delayed and checked only at the END
-- of the transaction instead of being checked after each statement.
--
--
-- ---
-- ACID: Isolation
-- - A transaction executes concurrently with other transaction
-- - Isolation: the effect is as if each transaction executes in isolation of the othe
rs
--
--
-- ---
-- ACID: Durability
--
-- The effect of a transaction must continue to
-- exists after the transaction, or the whole
-- program has terminated
--
-- Means: write data to disk
--
-- ==
-- 3 - More about aborting transactions
--
-- ROLLBACK
-- - If the app gets to a place where it can't
-- complete the transaction successfully, it can
-- execute ROLLBACK
-- - This causes the system to "abort" the
-- transaction
-- – The database returns to the state without any of
-- the previous changes made by activity of the

-- transaction
--
-- Reasons for Rollback
-- - User changes their mind ("ctl-C"/cancel)
-- - Explicit in program, when app program finds a problem
-- E.g. when the # of rented movies > max # allowed
-- - System-initiated abort
-- - System crash
-- - Housekeeping, e.g. due to timeouts
--
-- ==
-- 4 - Some final thoughts:
--
-- -- Consider how ACID transactions help application development.
-- Enjoy this help in hw7!
--
-- -- By default, when using a DBMS, each statement is its own
-- transaction!
--
-- -- Turing Awards to Database Researchers
-- - Charles Bachman 1973 for CODASYL (data model before relational model)
-- - Edgar Codd 1981 for relational databases
-- - Jim Gray 1998 for transactions!

