### Introduction to Data Management CSE 344

#### Lectures 10-11: System's Architecture and Relational Algebra

### Announcements

• Webquiz 3 due tonight!

• Today's lecture: 2.4 and 5.1

### Where We Are

- Motivation for using a DBMS for managing data
- SQL, SQL, SQL
  - Declaring the schema for our data (CREATE TABLE)
  - Inserting data one row at a time or in bulk (INSERT/.import)
  - Modifying the schema and updating the data (ALTER/UPDATE)
  - Querying the data (SELECT)
  - Tuning queries (CREATE INDEX)
- Next step: More knowledge of how DBMSs work
  - Client-server architecture
  - Relational algebra and query execution

CSE 344 - Winter 2013

### Architectures

1. Serverless

2. Two tier: client/server

3. Three tier: client/app-server/db-server



### **Client-Server**



- One server running the database
- Many clients, connecting via the ODBC or JDBC (Java Database Connectivity) protocol

### **Client-Server**

- One *server* that runs the DBMS (or RDBMS):
  - Your own desktop, or
  - Some beefy system, or
  - A cloud service (SQL Azure)
- Many *clients* run apps and connect to DBMS
  - Microsoft's Management Studio (for SQL Server), or
  - psql (for postgres)
  - Some Java program (HW5) or some C++ program
- Clients "talk" to server using JDBC/ODBC protocol



Web-based applications



### **DBMS Deployment: Cloud**



### Using a DBMS Server

- 1. Client application establishes connection to server
- 2. Client must authenticate self
- 3. Client submits SQL commands to server
- 4. Server executes commands and returns results





### The WHAT and the HOW

- SQL = WHAT we want to get form the data
- Relational Algebra = HOW to get the data we want
- The passage from WHAT to HOW is called query optimization

### Overview: SQL = WHAT

Product(<u>pid</u>, name, price) Purchase(<u>pid, cid</u>, store)

Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it

![](_page_14_Figure_0.jpeg)

### **Relational Algebra**

### Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b}, . . .

Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

### **Relational Algebra Operators**

- Union U, intersection ∩, difference -
- Selection o
- Projection
- Cartesian product ×, join ⋈
- Rename p
- Duplicate elimination  $\delta$
- Grouping and aggregation γ
- Sorting  $\tau$

Extended RA

RA

### **Union and Difference**

![](_page_18_Picture_1.jpeg)

What do they mean over bags?

### What about Intersection ?

Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

• Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

### Selection

• Returns all tuples which satisfy a condition  $\sigma_c(R)$ 

• Examples

$$-\sigma_{\text{Salary} > 40000}$$
 (Employee)

- $\sigma_{\text{name = "Smith"}}$  (Employee)
- The condition c can be =, <,  $\leq$ ,  $\geq$ ,  $\geq$ , <>

# Employee

| SSN     | Name  | Salary |
|---------|-------|--------|
| 1234545 | John  | 200000 |
| 5423341 | Smith | 600000 |
| 4352342 | Fred  | 500000 |

#### $\sigma_{\text{Salary} > 40000}$ (Employee)

| SSN     | Name  | Salary |
|---------|-------|--------|
| 5423341 | Smith | 600000 |
| 4352342 | Fred  | 500000 |

### Projection

Eliminates columns

$$\Pi_{A1,\ldots,An}(\mathsf{R})$$

- Example: project social-security number and names:
  - $\Pi_{SSN, Name}$  (Employee)
  - Answer(SSN, Name)

Different semantics over sets or bags! Why?

## Employee

| SSN     | Name | Salary |
|---------|------|--------|
| 1234545 | John | 20000  |
| 5423341 | John | 60000  |
| 4352342 | John | 20000  |

#### $\Pi_{\text{Name,Salary}}$ (Employee)

| Name | Salary | Name | Salary |
|------|--------|------|--------|
| John | 20000  | John | 20000  |
| John | 60000  | John | 60000  |
| John | 20000  |      |        |

#### **Bag semantics**

Set semantics

Which is more efficient?

### **Composing RA Operators**

#### Patient

| no | name | zip   | disease |
|----|------|-------|---------|
| 1  | p1   | 98125 | flu     |
| 2  | p2   | 98125 | heart   |
| 3  | р3   | 98120 | lung    |
| 4  | p4   | 98120 | heart   |

 $\pi_{zip,disease}$ (Patient)

| zip   | disease |
|-------|---------|
| 98125 | flu     |
| 98125 | heart   |
| 98120 | lung    |
| 98120 | heart   |

 $\pi_{zip} \left( \sigma_{disease='heart'} (Patient) \right)$ 

|   | zip   |
|---|-------|
| I | 98120 |
| Ĩ | 98125 |

 $\sigma_{disease='heart'}(Patient)$ 

| no | name | zip   | disease |
|----|------|-------|---------|
| 2  | p2   | 98125 | heart   |
| 4  | p4   | 98120 | heart   |

### **Cartesian Product**

• Each tuple in R1 with each tuple in R2

![](_page_25_Picture_2.jpeg)

Rare in practice; mainly used to express joins

### **Cross-Product Example**

#### Employee

| Name | SSN       |
|------|-----------|
| John | 999999999 |
| Tony | 77777777  |

#### Dependent

| EmpSSN     | DepName |
|------------|---------|
| 9999999999 | Emily   |
| 77777777   | Joe     |

#### **Employee** × **Dependent**

| Name | SSN       | EmpSSN    | DepName |
|------|-----------|-----------|---------|
| John | 999999999 | 999999999 | Emily   |
| John | 999999999 | 77777777  | Joe     |
| Tony | 77777777  | 999999999 | Emily   |
| Tony | 77777777  | 77777777  | Joe     |

### Renaming

• Changes the schema, not the instance

- Example:
  - $ρ_{N, S}$ (Employee) → Answer(N, S)

Not really used by systems, but needed on paper

### Natural Join

![](_page_28_Picture_1.jpeg)

- Meaning:  $R1 \bowtie R2 = \Pi_A(\sigma(R1 \times R2))$
- Where:
  - Selection  $\sigma$  checks equality of all common attributes
  - Projection eliminates duplicate common attributes

CSE 344 - Winter 2013

### **Natural Join Example**

S

| Α | В |
|---|---|
| Х | Y |
| Х | Z |
| Y | Z |
| Z | V |

 B
 C

 Z
 U

 V
 W

 Z
 V

|                                         | Α | В | С |
|-----------------------------------------|---|---|---|
| <b>R</b> ⋈ <b>S</b> =                   | Х | Z | U |
| $\Pi_{ABC}(\sigma_{R.B=S.B}(R\timesS))$ | Х | Z | V |
|                                         | Y | Z | U |
|                                         | Y | Z | V |
|                                         | Z | V | W |

CSE 344 - Winter 2013

### Natural Join Example 2

#### AnonPatient P

| age | zip   | disease |
|-----|-------|---------|
| 54  | 98125 | heart   |
| 20  | 98120 | flu     |

Voters V

| name | age | zip   |
|------|-----|-------|
| p1   | 54  | 98125 |
| p2   | 20  | 98120 |

 $\mathsf{P} \bowtie \mathsf{V}$ 

| age | zip   | disease | name |
|-----|-------|---------|------|
| 54  | 98125 | heart   | p1   |
| 20  | 98120 | flu     | p2   |

### Natural Join

 Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C), S(D, E), what is  $R \bowtie S$ ?

• Given R(A, B), S(A, B), what is  $R \bowtie S$ ?

### Theta Join

• A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here  $\theta$  can be any condition
- For our voters/disease example:

$$\mathsf{P} \Join \mathsf{P}_{\mathsf{P},\mathsf{zip}} = \mathsf{V}_{\mathsf{zip}}$$
 and  $\mathsf{P}_{\mathsf{age}} < \mathsf{V}_{\mathsf{age}} + 5$  and  $\mathsf{P}_{\mathsf{age}} > \mathsf{V}_{\mathsf{age}} - 5$  V

### Equijoin

• A theta join where  $\theta$  is an equality

$$R1 \bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$$

• This is by far the most used variant of join in practice

### Equijoin Example

#### AnonPatient P

| age | zip   | disease |
|-----|-------|---------|
| 54  | 98125 | heart   |
| 20  | 98120 | flu     |

Voters V

| name | age | zip   |
|------|-----|-------|
| p1   | 54  | 98125 |
| p2   | 20  | 98120 |

P⊠<sub>P.age=V.age</sub> V

| age | P.zip | disease | name | V.zip |
|-----|-------|---------|------|-------|
| 54  | 98125 | heart   | p1   | 98125 |
| 20  | 98120 | flu     | p2   | 98120 |

### Join Summary

• Theta-join:  $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$ 

– Join of R and S with a join condition  $\boldsymbol{\theta}$ 

– Cross-product followed by selection  $\boldsymbol{\theta}$ 

- Equijoin:  $R_{\bowtie_{\theta}}S = \pi_{A}(\sigma_{\theta}(R \times S))$ 
  - Join condition  $\boldsymbol{\theta}$  consists only of equalities
  - Projection  $\pi_A$  drops all redundant attributes
- Natural join:  $R \bowtie S = \pi_A (\sigma_{\theta}(R \times S))$ 
  - Equijoin
  - Equality on **all** fields with same name in R and in S

### So Which Join Is It?

 When we write R ⋈ S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

### More Joins

#### Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
  - Left outer join
  - Right outer join
  - Full outer join

### **Outer Join Example**

#### AnonPatient P

| age | zip   | disease |
|-----|-------|---------|
| 54  | 98125 | heart   |
| 20  | 98120 | flu     |
| 33  | 98120 | lung    |

#### AnnonJob J

| job     | age | zip   |
|---------|-----|-------|
| lawyer  | 54  | 98125 |
| cashier | 20  | 98120 |

| age | zip   | disease | job     |
|-----|-------|---------|---------|
| 54  | 98125 | heart   | lawyer  |
| 20  | 98120 | flu     | cashier |
| 33  | 98120 | lung    | null    |

$$\mathsf{P}\ltimes\mathsf{V}$$

### Some Examples

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10  $\pi_{sname}$ (Supplier  $\bowtie$  Supply  $\Join(\sigma_{psize>10}$  (Part))

Q3: Name of supplier of red parts or parts with size greater than 10  $\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10} (Part) \cup \sigma_{pcolor='red'} (Part)))$ 

### From SQL to RA

### From SQL to RA

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

> SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

### From SQL to RA

![](_page_42_Figure_1.jpeg)

### An Equivalent Expression

![](_page_43_Figure_1.jpeg)

## Extended RA: Operators on Bags

- Duplicate elimination  $\boldsymbol{\delta}$
- Grouping γ
- Sorting  $\tau$

### Logical Query Plan

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

### How about Subqueries?

```
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)
```

### How about Subqueries?

![](_page_49_Figure_2.jpeg)

### How about Subqueries?

SELECT Q.sno FROM Supplier Q WHERE Q.sstate = 'WA' and not exists (SELECT \* FROM Supply P WHERE P.sno = Q.sno and P.price > 100)

De-Correlation

SELECT Q.sno FROM Supplier Q WHERE Q.sstate = 'WA' and Q.sno not in (SELECT P.sno FROM Supply P WHERE P.price > 100)

### How about Subqueries?

![](_page_51_Figure_2.jpeg)

### How about Subqueries?

![](_page_52_Figure_2.jpeg)

### From Logical Plans to Physical Plans

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid, pno</u>, quantity)

Example

SELECT sname FROM Supplier x, Supply y WHERE x.sid = y.sid and y.pno = 2 and x.scity = 'Seattle' and x.sstate = 'WA'

Give a relational algebra expression for this query

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, pno, quantity)

### **Relational Algebra**

 $\pi_{\text{sname}}(\sigma_{\text{scity='Seattle'} \land \text{sstate='WA'} \land \text{pno=2}} (\text{Supplier} \Join))$ 

![](_page_56_Figure_0.jpeg)

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

### Physical Query Plan 1

![](_page_57_Figure_3.jpeg)

A physical query plan is a logical query plan annotated with physical implementation details Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid, pno</u>, quantity) Physical Query Plan 2

![](_page_58_Figure_1.jpeg)

CSE 344 - Winter 2013

![](_page_59_Figure_0.jpeg)

### Physical Data Independence

- Means that applications are insulated from changes in physical storage details
  - E.g., can add/remove indexes without changing apps
  - Can do other physical tunings for performance
- SQL and relational algebra facilitate physical data independence because both languages are "set-at-a-time": Relations as input and output