
1 

Introduction to Data Management 
CSE 344 

Lecture 9: SQL Wrap-up 
and RDBMs Architecture 

CSE 344 - Winter 2013 



Announcements 

•  Webquiz due on Monday, 1/28 

•  Homework 3 is posted: due on Wednesday, 2/6 

CSE 344 - Winter 2013 2 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=? 

SELECT *  
FROM V 
WHERE N=? 

Suppose we have queries like these: 

Which of these indexes are helpful for each query? 

SELECT *  
FROM V 
WHERE M=? and N=? 

1.  Index on V(M) 
2.  Index on V(N) 
3.  Index on V(M,N) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), …, (100, 100) 

SELECT *  
FROM V 
WHERE M=3 and N=5 

Index on V(M) 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

List of pointers to records (3,1), (3,2), …, (3,100) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), …, (100, 100) 

SELECT *  
FROM V 
WHERE M=3 and N=5 

How do we compute 
this query?  

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

Index on V(M) Index on V(N) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), …, (100, 100) 

SELECT *  
FROM V 
WHERE M=3 and N=5 

B+
Tr
ee
	


1,1 

1,2 

… 

… 

3,4 

3,5 

… 

Single pointer to the record (3,5) 

Index on V(M,N) 



Review: Indexes 

Discussion 
•  Why not create all three indexes V(M), V(N), 

V(M,N)? 
•  Suppose M is the primary key in V(M, N): 

V = {(1,1), (2,2), …, (10000, 10000)} 
How do the two indexes V(M) and V(M,N) 
compare?  Consider their utility for evaluating 
the predicate M=5 

CSE 344 - Winter 2013 7 



8 

Review: Subqueries in WHERE 

Universal quantifiers are hard !  L 

same as: 

CSE 344 - Winter 2013 

Universal quantifiers 

Product (pname,  price, cid) 
Company(cid, cname, city) 

Find all companies that make only products with price < 200 

Find all companies s.t. all their products have price < 200 



Review: Subqueries in WHERE 

2. Find all companies s.t. all their products have price < 200 

1. Find the other companies: i.e. s.t. some product ≥ 200 
SELECT DISTINCT  C.cname 
FROM     Company C 
WHERE  C.cid IN (SELECT P.cid 
                                 FROM Product P 
                                 WHERE P.price >= 200) 

SELECT DISTINCT  C.cname 
FROM     Company C 
WHERE  C.cid NOT IN (SELECT P.cid 
                                          FROM Product P 
                                          WHERE P.price >= 200) 

9 

Product (pname,  price, cid) 
Company(cid, cname, city) 

Find all companies s.t. all their products have price < 200 



10 

Review: Subqueries in WHERE 

SELECT DISTINCT  C.cname 
FROM     Company C 
WHERE NOT EXISTS (SELECT * 
                                        FROM Product P 
                                        WHERE P.cid = C.cid and P.price >= 200) 

Using EXISTS: 

CSE 344 - Winter 2013 

Universal quantifiers 

Product (pname,  price, cid) 
Company(cid, cname, city) 

Find all companies s.t. all their products have price < 200 



11 

Review: Subqueries in WHERE 

SELECT DISTINCT  C.cname 
FROM     Company C 
WHERE 200 > ALL  (SELECT price 
                                    FROM Product P 
                                    WHERE P.cid = C.cid) 

Using ALL: 

CSE 344 - Winter 2013 

Universal quantifiers 

Product (pname,  price, cid) 
Company(cid, cname, city) 

Find all companies s.t. all their products have price < 200 



12 

Question for Database Fans 
and their Friends 

•  Can we unnest the universal quantifier query ? 

CSE 344 - Winter 2013 



Monotone Queries 
•  Definition A query Q is monotone if: 

–  Whenever we add tuples to one or more input tables, the 
answer to the query will not lose any of of the tuples 

pname price cid 

Gizmo 19.99 c001 

Gadget 999.99 c003 

Camera 149.99 c001 

Product (pname,  price, cid) 
Company(cid, cname, city) 

pname price cid 

Gizmo 19.99 c001 

Gadget 999.99 c003 

Camera 149.99 c001 

iPad 499.99 c001 

cid cname city 

c001 Sunworks Bonn 

c002 DB Inc. Lyon 

c003 Builder Lodtz 

Product Company 
A B 

149.99 Lodtz 

19.99 Lyon 

cid cname city 

c001 Sunworks Bonn 

c002 DB Inc. Lyon 

c003 Builder Lodtz 

A B 

149.99 Lyon 

19.99 Lyon 

19.99 Bonn 

149.99 Bonn 

Is the mystery 
query monotone? 

Product Company 

Q 

Q 



Monotone Queries 
•  Theorem:  A SELECT-FROM-WHERE query (without 

subqueries or aggregates) is monotone. 

•  Proof.  We use the nested loop semantics: if we 
insert a tuple in a relation Ri, this will not remove any 
tuples from the answer 

CSE 344 - Winter 2013 14 

SELECT a1, a2, …, ak 
FROM    R1 AS x1, R2 AS x2, …, Rn AS xn 
WHERE  Conditions 

for x1 in R1 do 
      for x2 in R2 do 
           ….. 
                for xn in Rn do 
                       if Conditions 
                             output (a1,…,ak) 



Monotone Queries 
•  The query:  

 
 
is not monotone 

•  Consequence: we cannot write it as a SELECT-
FROM-WHERE query without nested subqueries 15 

Find all companies s.t. all their products have price < 200 

pname price cid 

Gizmo 19.99 c001 

cid cname city 

c001 Sunworks Bonn 

cname 

Sunworks 

pname price cid 

Gizmo 19.99 c001 

Gadget 999.99 c001 

cid cname city 

c001 Sunworks Bonn 

cname 

Product (pname,  price, cid) 
Company(cid, cname, city) 



16 

Queries that must be nested 

•  Queries with universal quantifiers or with 
negation 

•  Queries that have complex aggregates 

CSE 344 - Winter 2013 



17 

Practice these queries in SQL 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Find drinkers that frequent only bars that serves only beer they like. 

x:     ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

x:    ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 

x:    ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z)) 

Ullman’s drinkers-bars-beers example 

Find drinkers that frequent some bar that serves only beers they like. 

x:     ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z)) 



GROUP BY v.s. Nested Queries 

SELECT       product, Sum(quantity) AS TotalSales 
FROM          Purchase 
WHERE       price > 1 
GROUP BY  product 

SELECT DISTINCT  x.product, (SELECT Sum(y.quantity) 
                                                      FROM     Purchase y 
                                                      WHERE x.product = y.product  
                                                                   AND price > 1) 
                                                    AS TotalSales 
FROM          Purchase x 
WHERE       price > 1 

Why twice ? 18 

Purchase(pid, product, quantity, price) 



Unnesting Aggregates 

Find the number of companies in each city 

SELECT DISTINCT city, (SELECT count(*)  
                                            FROM Company Y  
                                            WHERE X.city = Y.city) 
FROM  Company X 

SELECT city,  count(*) 
FROM   Company 
GROUP BY city 

Equivalent queries 

Note: no need for DISTINCT 
(DISTINCT is the same as GROUP BY) 

CSE 344 - Winter 2013 
19 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Unnesting Aggregates 

Find the number of products made in each city 
SELECT DISTINCT X.city, (SELECT count(*)  
                                                FROM Product Y, Company Z 
                                                WHERE Z.cid=Y.cid 

     AND Z.city = X.city) 
FROM  Company X 

SELECT X.city, count(*) 
FROM Company X, Product Y 
WHERE X.cid=Y.cid  
GROUP BY X.city 

They are NOT 
equivalent ! 

(WHY?) 

What if there 
are no products 

for a city? 

20 

Product (pname,  price, cid) 
Company(cid, cname, city) 



More Unnesting 

•  Find authors who wrote ≥ 10 documents: 
•  Attempt 1: with nested queries 

SELECT DISTINCT Author.name 
FROM          Author 
WHERE        (SELECT count(Wrote.url) 
                      FROM Wrote 
                      WHERE Author.login=Wrote.login) 
                          > 10 

This is 
SQL by 
a novice 

Author(login,name) 
Wrote(login,url) 

CSE 344 - Winter 2013 21 



More Unnesting 

•  Find all authors who wrote at least 10 documents: 
•  Attempt 2: SQL style (with GROUP BY) 

SELECT       Author.name 
FROM          Author, Wrote 
WHERE       Author.login=Wrote.login 
GROUP BY Author.name 
HAVING      count(wrote.url) > 10 

This is 
SQL  by 

an expert 

CSE 344 - Winter 2013 22 



Finding Witnesses 

For each city, find the most expensive product made in that city 

CSE 344 - Winter 2013 23 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 

SELECT x.city, max(y.price) 
FROM Company x, Product y 
WHERE x.cid = y.cid 
GROUP BY x.city; 

Finding the maximum price is easy… 

But we need the witnesses, i.e. the products with max price 
CSE 344 - Winter 2013 24 

For each city, find the most expensive product made in that city 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 
To find the witnesses, compute the maximum price 
in a subquery 

CSE 344 - Winter 2013 25 

SELECT DISTINCT u.city, v.pname, v.price 
FROM Company u, Product v, 
     (SELECT x.city, max(y.price) as maxprice 
      FROM Company x, Product y 
      WHERE x.cid = y.cid 
      GROUP BY x.city) w 
WHERE u.cid = v.cid 
       and u.city = w.city 
       and v.price=w.maxprice; 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 

There is a more concise solution here: 

CSE 344 - Winter 2013 26 

SELECT u.city, v.pname, v.price 
FROM Company u, Product v, Company x, Product y 
WHERE u.cid = v.cid and u.city = x.city and x.cid = y.cid 
GROUP BY u.city, v.pname, v.price 
HAVING v.price = max(y.price); 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 

And another one: 

CSE 344 - Winter 2013 27 

SELECT u.city, v.pname, v.price 
FROM Company u, Product v 
WHERE u.cid = v.cid 
  and v.price >= ALL (SELECT y.price  
                                  FROM Company x, Product y  
                                  WHERE u.city=x.city  
                                         and x.cid=y.cid); 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Where We Are 

•  Motivation for using a DBMS for managing data 
•  SQL, SQL, SQL 

–  Declaring the schema for our data (CREATE TABLE) 
–  Inserting data one row at a time or in bulk (INSERT/.import) 
–  Modifying the schema and updating the data (ALTER/UPDATE) 
–  Querying the data (SELECT) 
–  Tuning queries (CREATE INDEX) 

•  Next step: More knowledge of how DBMSs work 
–  Client-server architecture 
–  Relational algebra and query execution 

CSE 344 - Winter 2013 28 



Data Management with SQLite 

CSE 344 - Winter 2013 29 

File 

DBMS 
Application 

(SQLite) 

Data file 

User 
Desktop 

Disk 

•  So far, we have been managing 
data with SQLite as follows: 

–  One data file 
–  One user 
–  One DBMS application 

•  But only a limited number of 
scenarios work with such model 



Client-Server Architecture 

… 
File
2 

File
1 

Server Machine 

Connection (JDBC, ODBC) 

30 

Client 
Applications 

DBMS Server 
Process 

(SQL Server) 

DISK 

•  One server running the database 
•  Many clients, connecting via the ODBC or JDBC  

(Java Database Connectivity) protocol 

Data files 

Supports many apps and 
many users simultaneously 



31 

Client-Server Architecture 

•  One server that runs the DBMS (or RDBMS): 
–  Your own desktop, or 
–  Some beefy system, or 
–  A cloud service (SQL Azure) 

•  Many clients run apps and connect to DBMS 
–  Microsoft’s Management Studio (for SQL Server), or 
–  psql (for postgres) 
–  Some Java program (HW5) or some C++ program 

•  Clients “talk” to server using JDBC/ODBC protocol 

CSE 344 - Winter 2013 



DBMS Deployment: 3 Tiers 

Data files 
32 Browser 

DB Server 

Great for web-based 
applications 

Web Server &  
App Server 

Connection 
(e.g., JDBC) 

HTTP/SSL 



CSE 344 - Winter 2013 

DBMS Deployment: Cloud 

33 Users 

Great for web-based 
applications too 

HTTP/SSL 

Developers 

Data Files 

DB Server Web & App Server 



Using a DBMS Server 

1.  Client application establishes connection to server 
2.  Client must authenticate self 
3.  Client submits SQL commands to server 
4.  Server executes commands and returns results 

CSE 344 - Winter 2013 34 

DBMS 


