Introduction to Database Systems
CSE 344

Lecture 6:
Basic Query Evaluation and Indexes

CSE 344 - Winter 2013

Announcements

Webquiz due tonight
Homework 2 is posted, due next Wednesday

Today: query execution, indexes
Reading: 14.1
Monday: no classes

Wednesday: guest lecturer Paris Koutris

CSE 344 - Winter 2013

Where We Are

 We learned importance and benefits of DBMSs

« We learned how to use a DBMS
— How to specify what our data will look like: schema
— How to load data into the DBMS
— How to ask SQL queries
« Today:
— How the DBMS executes a query
— How we can help it run faster

CSE 344 - Winter 2013 3

Query Evaluation Steps

SQL query
)

[Parse & Check Query }

N

Decide how best to
answer query: query
optimization

)

Query Execution

|

Return Results

Example

Student Takes Course
ID fName | IName studentID | courselD courselD | name
195428 | Tom |Hanks | 195428 |344 344 Databases

645947 | Amy | Hanks

SELECT *
FROM Student x, Takesy
WHERE x.ID=y.studentID AND y.courselD > 300

How can the DBMS answer this query?

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Possible Query Plan 1

- Nested-
for y in Takes loop join

if courselD > 300 then
for x in Student
if x.ID=y.studentID

output *

CSE 344 - Winter 2013 6

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Possible Query Plan 2

sort Student on ID
sort Takes on studentID (and filter on coursesID > 300)
merge join Student, Takes on ID = studentID

for (x,y) in merged_result output *

Merge join

CSE 344 - Winter 2013 7

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Possible Query Plan 3
create a hash-table

for x in Student
insert x in the hash-table on x.ID

fory in Takes
if courselD > 300
then probe y.courselD in hash-table
if match found
then output *

CSE 344 - Winter 2013 8

Discussion

Which plan is best”? Choose one:

* Nested loop join

* Merge join

* Hash join

fory in Takes
if courselD > 300 then
for y in Takes
if x.ID=y.studentID
output *

sort Student on ID

sort Takes on studentID (and filter on coursesID > 300)
merge join Student, Takes on ID = studentID

return results

create a hash-table
for x in Student
insert x in the hash-table on x.ID

fory in Takes
if courselD > 300
then probe y.courselD in hash-table
if match found and additional conditions
then return match

Discussion

WhICh plan IS beSt? Choose One fory in Takes
« Nested loop join: O(N?) *courslD > 300 then

if x.ID=y.studentID

— Could be O(N) output *

when few courses>300 [sort student on 1D
sort Takes on studentID (and filter on coursesID > 300)

° Merge JO| N: O(N Iog N) merge join Student, Takes on ID = studentID

return results

— Could be O(N)
if tables already sorted for e mstdemt

insert x in the hash-table on x.ID
e Hash join: O(N) expectation

fory in Takes
if courselD > 300
then probe y.courselD in hash-table
if match found and additional conditions
then return match

Student

Data Storage

ID | fName IName
10 | Tom Hanks
20 | Amy Hanks

DBMSs store data in files

Most common organization is row-wise storage

Hanks

* On disk, a file is split into [12_|™m block 1
20 Amy Hanks
blocks >0 block 2
« Each block contains =
220 block 3
a set of tuples 240

420

800

In the example, we have 4 blocks with 2 tuples each
CSE 344 - Winter 2013

11

Student

ID

fName

IName

Data File Types |

Tom

Hanks

20

Amy

Hanks

The data file can be one of:
« Heap file

— Unsorted
« Sequential file

— Sorted according to some attribute(s) called key

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.

In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on

our database.

Index

* An additional file, that allows fast access to
records in the data file given a search key

* The index contains (key, value) pairs:
— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record

* Could have many indexes for one table

[Key = means here search key}

CSE 344 - Winter 2013 13

This Is Not A Key

Different keys:

* Primary key — uniquely identifies a tuple

+ Key of the sequential file — how the datafile is
sorted, if at all

* Index key — how the index is organized

Lhis 4s not a nune.

Index Student_ID on
/—%

Student

10 —

20 —]

50 B

200]

220

240

420

800

950

ID | fName IName
Example 1:
p 10 | Tom Hanks
|ndeX On ID 20 | Amy Hanks
Student.ID Data File Student| ...
~ — —
| —10 Tom Hanks
1 20 Amy Hanks
[—| 50
[200
220
240
420
800
CSE 344 - Winter 2013 15

Student

ID | fName IName
Example 2:
p 10 | Tom Hanks
Index on fName [aw [
Index Student_fName .
on Student.fName Data File Student] ...
e
~ —
10 Tom Hanks
Amy
Amm ﬁz‘ 20 | Amy Hanks
Bob » | 50
—
200
220
240
420
800
Tom
CSE 344 - Winter 2013 16

Index Organization

Several index organizations:
* Hash table

B+ trees — most popular

— They are search trees, but they are not binary
instead have higher fanout

— will discuss them briefly next

« Specialized indexes: bit maps, R-trees,
iInverted index

CSE 344 - Winter 2013

17

B+ Tree Index by Example

d - 2 Find the key 40
80
20 | 60 100 | 120 | 140
\ —)
20 %40 = 60 \\
15| 18 20 | 30| 40 | 50 60 | 65 80 | 85| 90

ek 1N S

17 \ / \
15 18 20 30 || 40 50 || 60 || 65 rﬁo 85 90

CSE 344 - Winter 2013 18

Clustered vs Unclustered

A Bt Tre

J N\ Data entries / \

Data entries L

/A \\Y INNNN (Andex File) AN R~ X

/4 AN Datafiley /X N/ N T e

Data Records Data Records

CLUSTERED UNCLUSTERED

[Every table can have only one clustered and many unclustered indexes }

CSE 344 - Winter 2013 19

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
» Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data
* Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered
« Organization B+ tree or Hash table

CSE 344 - Winter 2013

20

Scanning a Data File

Disks are mechanical devices!
— Technology from the 60s; density much higher

We read only at the rotation speed!

Consequence:

Sequential scan is MUCH FASTER than
random reads

— Good: read blocks 1,2,3,4,5,...

— Bad: read blocks 2342, 11, 321,9, ...

Rule of thumb:

— Random reading 1-2% of the file = sequential
scanning the entire file; this is decreasing over
time (because of increased density of disks)

21

for y in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

SELECT *
FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Query Plan 1 Revisited

Assume the database has indexes on these attributes:
* index takes courselD = index on Takes.courselD
* index student ID = index on Student.ID

Index selection

for y in index_Takes_courselD where y.courselD > 300
for x in Takes where x.ID = y.studentID
output *

CSE 344 - Winter 2013 22

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1 ON V(N) |

CREATE INDEX V2 ON V(P, |v|)|
CREATE INDEX V3 ON V(M, N) |
CREATE UNIQUE INDEX V4 ON V(N) |

CREATE CLUSTERED INDEX V5 ON V(N)

Not supported in
SQLite

CSE 344 - Winter 2013 23

Student

ID

fName

IName

Which Indexes? |

Tom

Hanks

20

Amy

Hanks

 How many indexes could we create?

 Which indexes should we create?

[In general this is a very hard problem}

Which Indexes?

* The index selection problem

— Given a table, and a “workload” (big Java

Student

ID

fName

IName

10

Tom

Hanks

20

Amy

Hanks

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

 WWho does index selection:
— The database administrator DBA

— Semi-automatically, using a database
administration tool

CSE 344 - Winter 2013

25

Index Selection: Which Search Key

 Make some attribute K a search key if the
WHERE clause contains:

— An exact match on K
— A range predicate on K
— Ajoinon K

CSE 344 - Winter 2013 26

The Index Selection Problem 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

[What indexes ’?}

CSE 344 - Winter 2013

The Index Selection Problem 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=7? WHERE P=?

[A: V(N) and V(P) (hash tables or B-trees)}

CSE 344 - Winter 2013

The Index Selection Problem 2

V(M, N, P); I

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT* INSERT INTO V
FROM YV FROM V VALUES (?, ?, ?)
WHERE N>? and N<? | | WHERE P=?

[What indexes ’?}

CSE 344 - Winter 2013 29

The Index Selection Problem 2

V(M, N, P); I

Your workload is this

100000 queries:

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM YV

WHERE N>7 and N<? | | WHERE P=7?

INSERT INTO V
VALUES (2, 2, ?)

[A: definitely V(N) (must B-tree); unsure about V(P)}

CSE 344 - Winter 2013

30

The Index Selection Problem 3

V(M, N, P); I

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)

WHERE N=7? WHERE N=? and P>?

[What indexes ’?}

CSE 344 - Winter 2013 31

The Index Selection Problem 3

V(M, N, P); I

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)

WHERE N=7? WHERE N=? and P>?

A V(N,P)|

CSE 344 - Winter 2013 32

The Index Selection Problem 4

V(M, N, P); I

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>? and N<? WHERE P>? and P<?

[What indexes ?}

CSE 344 - Winter 2013 33

The Index Selection Problem 4

V(M, N, P); I

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>7? and N<? WHERE P>? and P<?

[A: V(N) secondary, V(P) primary index}

CSE 344 - Winter 2013 34

Basic Index Selection Guidelines

Consider queries in workload in order of importance

Consider relations accessed by query
— No point indexing other relations

Look at WHERE clause for possible search key
Try to choose indexes that speed-up multiple queries

And then consider the following...
CSE 344 - Winter 2013 35

Index Selection:
Multi-attribute Keys

Consider creating a multi-attribute key on K1,
K2, ... if

« WHERE clause has matches on K1, K2, ...

— But also consider separate indexes

« SELECT clause contains only K1, K2, ..

— A covering index is one that can be used
exclusively to answer a query, e.g. index R(K1,K2)
covers the query:

‘SELECT K2 FROM R WHERE K1=55 |

CSE 344 - Winter 2013 36

To Cluster or Not

« Range queries benefit mostly from clustering

« Covering indexes do not need to be
clustered: they work equally well unclustered

CSE 344 - Winter 2013

37

Cost

A

SELECT *

WHERE K>7? and K<?

X
S
'S
oy
L FROM R
3
S
W)

Sequential scan

100

Percentage tuples retrieved
CSE 344 - Winter 2013 38

