—— CSE 344 Lecture 03 —— Basic SQL
—— Readings: 6.1, 6.2

-— we will use the following schema in this lecture:
—— Product(pname, price, category, manufacturer)
—— Company(cname, country)

create table Company
(cname varchar(20) primary key,
country varchar(20));

insert into Company values ('GizmoWorks', 'USA');
insert into Company values ('Canon', 'Japan');
insert into Company values ('Hitachi', 'Japan');

—— note: sql lite is REALLY light: it accepts many erroneous command,
—— which other RDBMS would not accept. We will flag these as alerts.

—— Alert 1: As mentioned in the lecture 2 notes, sqlite allows a key to be null:
insert into Company values(NULL, 'Somewhere');

—— this is dangerous, since we cannot uniquely identify the tuple
—— better delete it before we get into trouble

delete from Company where country = 'Somewhere';

create table Product
(pname varchar(20) primary key,
price float,
category varchar(20),
manufacturer varchar(20) references Company);

—— Alert 2: sqlite does NOT enforce foreign keys by default. To enable
—— foreign keys use the following command. The command will have no

—— effect if your version of SQLite was not compiled with foreign keys
—— enabled. Do not worry about it.

PRAGMA foreign_keys=0N;

insert into Product values('Gizmo', 19.99, 'gadget', 'GizmoWorks');
insert into Product values('PowerGizmo', 29.99, 'gadget', 'GizmoWorks');
insert into Product values('SingleTouch', 149.99, 'photography', 'Canon');
insert into Product values('MultiTouch', 199.99, 'photography', 'Hitachi');
insert into Product values('SuperGizmo', 49.99, 'gadget', 'Hitachi');

— If we try:

insert into Product values('MultiTouch2', 199.99, 'photography', 'H2');
—— We should get an error if foreign keys got enforced

—— Error: foreign key constraint failed

—— Notice that the data we created is stored on disk.

—— Quite sqlite3

—— See that file "lecture3" on disk has now a non-zero size.

— It's a binary file. It contains the data for all our relations in one file.
—— When we come back to sqlite3, all our data is there.

—— 1. SELECTION queries select a subset of the table:

—— Before we start, let's switch to a better query output format
.mode column
.header ON

—— What do you think the following queries return?

select x*
from Product
where price > 100.0;

select *
from Product
where pname like

o O
%e%"';

—— 2. PROJECTION queries keep a subset of the attributes

select price, category
from Product;

—— some minor variations: DISTINCT and ORDER BY

—— This query returns duplicates:
select category
from Product;

—— Wait a minute... didn't we say that relations were sets? Why

—— do we suddently see bags? Why isn't the DBMS eliminating duplicates?

—— Key reason is performance: eliminating duplicates is an expensive operations.
—— So the DBMS will leave them if the user/application can tolerate them.

—— To eliminate duplicates, use DISTINCT:

select distinct category
from Product;

—— We can also order the outputs using ORDER BY

—— order alphabetically by name:
select *

from product

order by pname;

—— order by price descending
select *

from product

order by price desc;

—— order by manufacturer, then price descenting
select *

from product

order by manufacturer, price desc;

—— What happens if we order on an attribute that we do NOT return ?

—— First, let's try:
select *

from Product

order by manufacturer;

— Now, let's try:
select category

from Product

order by manufacturer;

—— What happens if we also do DISTINCT ?
—— The query should fail but...
—— Alert 3: sqlite does the wrong thing here, again:

select distinct category
from Product
order by manufacturer;

—— 3. JOINS

—— What should the following query return?
select pname, price

from Product, Company

where manufacturer=cname and country='Japan' and price < 150;

—— Let's analyze it together on the white board.
—— Note that manufacturer=cname is called the "join predicate"

—— skkkk In class:
—— skkkk Retreive all American companies that manufacture products in the 'gadget' category

SELECT DISTINCT cname

FROM Product, Company

WHERE country = 'USA' AND category = 'gadget'
AND manufacturer = cname;

—— sfxx Retreive all Japanese companies that manufacture products in
— both the 'gadget' and the 'photography' categories

SELECT DISTINCT cname

FROM Product P1, Product P2, Company

WHERE country = 'Japan'

AND P1l.category = 'gadget'

AND P2.category = 'photography'

AND Pl.manufacturer = cname AND P2.manufacturer = cname;

—— Joins may introduce duplicates:

select country
from Product, Company
where manufacturer=cname and category='gadget';

—— easy fix:
select distinct country

from Product, Company
where manufacturer=cname and category='gadget';

—— Aliases = are tuple variables that allow us to disambiguate attribute names
—— find all countries that manufacture both a product under $25 and a product over $25

select distinct x.country

from Company x, Product y, Product z

where x.cname = y.manufacturer and y.price < 25
and x.cname z.manufacturer and z.price > 25;

-— when no aliases are given, then the table name is used as an alias

—— The "nested loop" semantics of SQL queries

—— Query:

- select al, a2, ..., ak

— from R1 as x1, R2 as x2,, Rm as xm
- where Cond

—— Semantics:

- for x1 in R1 do
- for x2 in R2 do
— for x3 in R3 do

— for xn in Rm do
- if Cond then output(al,...,ak)

—— However, the query processor will ALMOST NEVER evaluate the query this way !

—— sekkkkk Important Concept: SQL IS A DELCARATIVE LANGUAGE
—— sppkkkk What it means: In SQL we say WHAT we want
== skokforokok the system figures out HOW to compute it

—— Using the formal semantics to understand queries

create table R(a int);
create table S(a int);
create table T(a int);

insert into R values (1);
insert into R values (2);
insert into R values (3);

insert into S values (2);
insert into S values (3);
insert into S values (4);

insert into T values (1);
insert into T values (2);
insert into T values (4);

—— skx what does this query compute ?
select distinct R.a

from R, S

where R.a=S.a;

—— answer: R intersect S

—— xxk and this ?

select distinct T.a
fromR, S, T

where R.a=T.a and S.a=T.a;

—— answer: R intersect S

—— xxx but what about this one ?
select distinct T.a

fromR, S, T

where R.a=T.a or S.a=T.a;

—— you might think it is: (R union S) intersect T

—— but think again! what happens if one of these relations was empty?
— Let's try it...

delete from R;

select distinct T.a
fromR, S, T
where R.a=T.a or S.a=T.a;

—-— answer: the query reutnrs (R union S) intersect T if R,S are non-empty
- otherwise ikt returns the empty set

—— NULLs in SQL

insert into Company(cname, country) values('Apple', 'USA');
insert into Product(pname, price, category, manufacturer) values ('iPad 5', NULL,
"Apple');

—— print nicer:
.nullvalue NULL

select *
from Product;

—— We have a problem now:
select *

from Product

where price < 25;

select *

from Product

where price >= 25;

—— the ipad 5 is nowhere !
—— solution:

select *

from Product
where price is NULL;

—— Complex conditions involving NULL's
- We need to evaluate in SQL conditions like this:

'gadget’,

- (price < 25) and (category = 'gadget') or (manufacturer = 'Apple')
— Suppose price = 19, category = NULL, and manufacturer = NULL
— Is the predicate true or false?

insert into product(pname,price,category,manufacturer)
values ('NullProduct', 19.00, null, null);

select *

from product
where (price < 25) and (category = 'gadget') or (manufacturer = 'Apple');

- SQL has 3-valued logic:

- FALSE = 0 E.g. price<25 is FALSE when price=99
- UNKNOWN = 0.5 E.g. price<25 is UNKNOWN when price=NULL
— TRUE =1 E.g. price<25 is TRUE when price=19

— C1l AND C2 means min(C1,C2)
- Cl1 OR C(C2 means max(C1,C2)
- not C means 1-C

- In class: compute the truth value of the condition above
—— The rule for SELECT ... FROM ... WHERE C is the following:

- if C = TRUE then include the row in the output
— if C = FALSE or C = unknown then do not include it

—— Outer joins

insert into Company(cname, country) values ('Google', 'USA');
—— Get everything in the database

select *

from Company x, Product y

where x.cname = y.manufacturer;

—— "Join" is also called an "inner join", and can be written like this:

select *
from Company inner join Product on cname = manufacturer;

—— But we are NOT getting everything in the database !

—— "Left outer join" means: include everything on the left, fill in the right parft with NULL
values

select *x
from Company left outer join Product on cname = manufacturer;

