Section 10

Priya Rao Chagaleti

XML / XQuery / XPath

Problem a 1

Book(bid, title, publisher, price, year)
Author(aid, last, first)
Editor(eid, last, first, affiliation)
Writes(aid, bid)
Edits(edi, bid)

Problem a 2 i

select Book.title
from book, edits, editor
where book.bid = edits.bid and edits.eid = editor.eid
and book.year < 2005 and book.price < 99
and editor.last = 'Samet'</pre>

Problem a 2 ii

select x.title
from book x, writes y, author z, writes u, author v
where x.bid = y.bid and y.aid = z.aid
and x.bid = y.bid and y.aid = z.aid
and z.last = "Hull" and v.last "Vianu"

Problem b i

Let E stand for Element

select distinct xtitle.child
from E xbib, E xbook, E xeditor, E xlast, E xprice, E xtitle
where xbib.id = 0 and xbib.tag='bib'
and xbook.id=xbib.child and xbook.tag='book'
and xeditor.id=xbook.child and xeditor.tag='editor' and xeditor.child='Samet'
and xprice.id=xbook.child and xprice.tag='price' and xprice.child <'99'
and xtitle.id=xbook.child and xtitle.tag='title'</pre>

Problem b ii

```
select distinct xtitle.child
from E xbib, E xbook, E xa1, E xl1, E xa2, E xl2, E xtitle
where xbib.id = 0 and xbib.tag='bib'
and xbook.id=xbib.child and xbook.tag='book'
and xa1.id = xbook.child and xa1.tag = 'author'
and xl1.id = xa1.child and xl1.tag = 'last' and xl1.child = 'Hull'
and xa2.id = xbook.child and xa2.tag = 'author'
and xl2.id = xa2.child and xl2.tag = 'last' and xl2.child = 'Vianu'
and xtitle.id = xbook.id and xtitle.tag = 'title'
```

Conceptual design/ Constraints/ Views

Problem 1 a - Solution 1

Solution 1:

Table	$X^+ = ?$	New table 1	New table 2
R(A, B, C, D, E)	ABC+ = ABCD	$R_1(A, B, C, D)$	$R_2(A, B, C, E)$
$R_1(A, B, C, D)$	AD+ = ACD	$R_3(A, C, D)$	$R_4(A, B, D)$
$R_2(A, B, C, E)$	E + = BE	$R_5(B, E)$	$R_6(A, C, E)$

Answer: $R_3(A, C, D), R_4(A, B, D), R_5(B, E), R_6(A, C, E).$

Problem 1 a - Solution 2

Solution 2:

Table	$X^+ = ?$	New table 1	New table 2	
R(A, B, C, D, E)	E + = BE	$R_1(B,E)$	$R_2(A, C, D, E)$	
$R_2(A, C, D, E)$	AD+ = ACD	$R_3(A, C, D)$	$R_4(A, D, E)$	
Answer: $P(P, F) P(A(C, D)) P(A, D, F)$				

Answer: $R_1(B, E), R_3(A, C, D), R_4(A, D, E)$.

Problem 1 b

FD	Holds ?	
$B \to A$	holds	
$C \to A$	fails: tuples 1,3	
$A \rightarrow B$	fails: tuples 1,2	
$C \rightarrow B$	fails: tuples 1,3	
$A \rightarrow C$	fails: tuples 1,2	
$B \rightarrow C$	fails: tuples 3,4	
$BC \to A$	holds	
$AC \rightarrow B$	holds	
$AB \to C$	fails: tuples 3,4	

Problem 2 a

Note: This solution assumes that when a person returns a piece of equipment, the corresponding tuple is deleted from the **rents** relation. If we wanted to keep the historical data, we would change the relationship multiplicity to many-many and we could enforce the constraint that dates cannot overlap using a check constraint or trigger. Additionally, we do not prevent a piece of equipment form being both a PairOfSkis and a Snowboard at the same time. Such a hybrid still counts as one piece of equipment to rent.

Problem 2 b

CREATE TABLE owns(skier_id INT REFERENCES Skier, ski_id INT REFERENCES PairOfSkis, purchase_price INT, PRIMARY KEY(ski_id), CHECK (purchase_price > 0))

Problem 3 a

A superkey is a set of attributes X s.t. $X^+ =$ all attributes.

From the FDs above, we can derive:

 $\{A,B,D\}^+ = \{A,B,C,D\}^+ = \{A,B,D,E\}^+ = \{A,B,C,D,E\}^+ = \{A,B,C,E\}^+ = \{A,B,C$

Hence, $\{A, B, D\}, \{A, B, C, D\}, \{A, B, D, E\}$, and $\{A, B, C, D, E\}$ are all superkeys.

A key is a set of attributes which form a superkey and for which no subset is a superkey. In our example, $\{A, B, D\}$ is the only key.

Problem 3 b

Both functional dependencies violate BCNF. Try $\{A, B\}^+ = \{A, B, E\}$. Decompose into $R1(\underline{A},\underline{B},\underline{E})$ and $R2(\underline{A},\underline{B},\underline{C},\underline{D})$.

For R1, AB \rightarrow E is the only FD and $\{A, B\}$ is a key, so R1 is in BCNF.

R2 is not in BCNF, since $\{D\}$ is not a key and we have $D \rightarrow C$.

Try $\{D\}^+ = \{C, D\}$. Decompose into R3(C, <u>D</u>) and R4(A, B, D)

End result: R1(A,B,E), R3(C, D), and R4(A, B, D)

Parallel Data Processing

Problem 4 a

Job J	Type of Parallelism		
consists of:	Inter-query	Inter-operator	Intra-operator
1 SQL query	100	100	10
1000 SQL queries	10	100	10

Problem 4 b

i)16MB/128KB = 128

ii)16MB/64KB = 256

iii)365: # days/year

Problem 4 c

i) 50 * 100 = 5000

ii) 5GB/50 = 100MB

iii) 100*1/10 + 50*1/10 = 15 minutes

iv) 15 + 9 = 24 minutes