
Three Query Language Formalisms

Dan Suciu

September 2011
Updated: January, 2012

This is supplemental material for various database courses offered at the
University of Washington.

1 Introduction

We describe three formalisms, or languages, for expressing queries: (1) re-
lational algebra, (2) non-recursive datalog with negation, and (3) relational
calculus. We also discuss how to translate between these three language.
The three formalisms capture different aspects of database queries: under-
standing them, and understanding the translation between them will strongly
enhance your ability to master complex database queries, and to understand
concepts in query optimization and query execution.

Before we start, let’s talk about schemas and queries.

Schemas By the schema of a relation we mean its attributes. It turns
out there are two ways to define the schema: in the named perspective each
attribute has a name, and the schema is a set of attribute names. In the
unnamed perspective attributes have no name, and we identify them by their
position; the schema of a relation is a number, called arity. Here is the
schema of Actor, Casts, Movie in the two formalisms, and how we refer to
the First Name:

1

Named Perspective Unnamed Perspective
Schema: Actor(id, fname, lname) arity = 3

Casts(pid, mid) arity = 2
Movie(id, title, year) arity = 3

Attribute reference: Actor.fname Actor.2

In the named perspective the order of attributes doesn’t matter. If
we write Actor(lname, id, fname) or Actor(lname, fname, id), it’s the same
thing. In the unnamed perspective the order matters, because in the schema
we just say that the arity 3; attributes are identified by their position, and we
need to remember which is which. To select the first-name, we write Actor.2
(assuming fname is the second attribute).

Queries A query Q is a function that takes as input some finite relations
R1, . . . , Rm, and returns as output one finite relation R. We do not dis-
cuss bag semantics here, so both inputs and the output are sets. We write
Q(R1, . . . , Rm) to emphasize that Q is a function with inputs R1, . . . , Rm.

Keep in mind that all queries are typed: the schemas of both input re-
lations and the output are fixed. For example, consider the following SQL
query:

Q: select distinct a.fname, a.lname

from Actor a, Casts c1, Movie m1, Casts c2, Movie m2

where a.id = c1.pid and c1.mid = m1.id

and a.id = c2.pid and c2.mid = m2.id

and m1.year = 1910 and m2.year = 1940;

Then the query takes three input relations, Actor, Casts, Movie, and returns
an output relation of arity 2. We assume that the schemas of the three
relations to be given, as above; the schema of the output relation is also
fixed, namely (fname, lname).

2 Relational Algebra

Relational Algebra (RA) is used by query optimizers as an intermediate
language for query optimization, and also for query execution. We cover
RA in class. RA is meant to be executed by the system, not for expressing
queries: users almost never have to write queries in directly RA, they write

2

queries in some other language (usually SQL) and the system translates these
to RA. However, some recent, modern query languages, like Pig Latin, look
quite a bit like RA, so you should feel familiar writing queries directly in RA
if needed.

RA has five operators:

Selection σC(R), where C is a Boolean condition.

Projection ΠA(R), where A is a list of attributes.

Join R1 onC R2, where C is a Boolean condition.

Union R1 ∪R2.

Difference R1 −R2.

If we use the unnamed perspective, then that’s all. If we use the named
perspective, then we need one more operation, renaming ρA(R), where A is a
list of renamed attributes. You should know very well what these operators
mean: if not, please review the lecture notes, or read in textbook.

An RA query is an expression consisting of these operators, applied to
some base relations R1, R2, . . . We always insist that the expressions are cor-
rectly typed, for example we cannot write Actor ∪ Casts because the two
relations have different arities; we cannot write Πid(Actor) ∪ Πpid(Cast) ei-
ther (why not ?).

For an example, the SQL query Q from Section 1 is translated into the
following RA expressions, in the unnamed and in the named perspective
respectively:

Q = Π2,3(σ8=′1910′∧13=′1940′((Actor on1=1 (Casts on2=1 Movie))

on1=1 (Casts on2=1 Movie))

Q = Πfname,lname(σy1=′1910′∧y2=′1940′((Actor onid=pid (Casts onmid=id ρy1=year(Movie)))

onid=pid (Casts onmid=id ρy2=year(Movie)))

Theoreticians prefer the concise notation of the unnamed perspective. In
practice, the named perspective is more user friendly, but we must rename
attributes to disambiguate. Make sure you understand in detail the two

3

expressions above; make sure you understand how renaming was used to
disambiguate between attribute names.

Sometimes, we abuse the notation and we drop the renaming altogether,
using tuples variables variables instead, as in:

Q = Πfname,lname(σm1.year=′1910′∧m2.year=′1940′((Actor onid=pid (Casts onmid=id Movie m1))

onid=pid (Casts onmid=id Movie m2))

Monotone Queries Selection, project, join, and union are monotone
operators. Every query written using only these four operators is monotone.
Difference is the only non-monotone operator in RA.

3 Non-Recursive Datalog With Negation

Datalog is the simplest, and most elegant formalisms for queries. Histor-
ically, it was introduced in order to for recursive queries, but its simplic-
ity makes it appealing today even for non-recursive queries. Think of non-
recursive datalog as SQL with an elegant syntax. A few commercial datalog
implementations exists, and several free implementations, but we will not
use any of them in class; if you’d like to try out one, I recommend DLV,
http://www.dbai.tuwien.ac.at/proj/dlv/. Since we cover datalog only
briefly in class, read this material carefully. It should be sufficient to learn
datalog.

Datalog uses only the unnamed perspective.

3.1 Non-Recursive Datalog

Let’s see examples:

Q1(y) :- Movie(x,y,1940)

This query finds the titles of all movies made in 1940: more precisely, it
retrieves all tuples of the form (x,y,1940)) in Movie (hence, the year must
be 1940), and returns y (the title). Such a query is called a conjunctive query,
or a datalog rule.

Consider now the following datalog rule:

4

http://www.dbai.tuwien.ac.at/proj/dlv/

Q2(f,l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,1940)

This returns the list of first and last names of all actors who acted in
movies made in 1940. Notice that when a variable occurs twice, then it must
be the same value. For example, z occurs twice: this says that Actor.id

must be equal to Casts.pid, because the same variable z occurs in both
positions. In other words, z joins Actor and Casts. Similarly x joins Casts

and Movie. If you’d like, you can write these equalities explicitly, as in the
following datalog rule, which computes exactly the same query:

Q2(f,l) :- Actor(z1,f,l), Casts(z2,x1), Movie(x2,y,1940), z1=z2, x1=x2

Finally, consider the query Q in Section 1. Here is how it looks in datalog:

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),

Casts(z,x2), Movie(x2,y2,1940)

So, you get the idea: one datalog rule is much like a SELECT-FROM-WHERE

SQL query, only it looks much simpler than SQL!
Now lets discuss multiple datalog rules. Let’s see the program below,

which computes all actors whose Bacon number is 1 or 2:

B0(x) :- Actor(x,’Kevin’, ’Bacon’)

B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)

B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)

Q4(x) :- B1(x)

Q4(x) :- B2(x)

Note that here we use several rules. The first computes the relation
B0(x), which will contain the id of Kevin Bacon: thus, B0 contains actors
with Bacon number 0. The second rule computes B1(x), the actors with
Bacon number 1. The third rule computes B2(x), the actors with Bacon
number 2: notice how it refers to B1 (because an actor has Bacon number
2 if she acted in a movie with an actor with Bacon number 1). Now look
carefully at the last two rules, which define the query’s output Q4: every x in
B1 is copied to Q4, then every x in B2 is copied to Q4. Thus, Q4 is the union
of B1 and B2.

Congratulations: you have just learned datalog!
Exercise What do each of the datalog queries E1, E2, E3, E4 compute?

5

E1(x) :- R1(x), R2(x)

E2(x) :- R1(x)

E2(x) :- R2(x)

E3(x,y) :- R1(x), R2(y)

E4(x) :- R1(x), R2(y), x != y

Exercise Consider a graph given as a binary relation E(x,y). What does
P5 compute below?

P1(x,y) = E(x,z),E(z,y)

P2(x,y) = P1(x,z),P1(z,y)

P3(x,y) = P2(x,z),P2(z,y)

P4(x,y) = P3(x,z),P3(z,y)

P5(x,y) = P4(x,z),P4(z,y)

3.2 Terminology

A program is a sequence of rules. Each rule is:

H(x) : −P1, . . . , Pm (1)

where H is a relational symbol, x is a list of variables, and P1, . . . , Pm are
atomic predicates. Each predicate is either a relational predicate, R(t1, . . . , tk)
where t1, . . . , tk are variables or constants, or an interpreted predicate, e.g.
x = y or 2 ∗ x > y + z. H(x) the rule’s head, and P1, . . . , Pm is the rule’s
body.

The input relations R1, . . . , Rm are called extensional database relations,
or EDB. The output relations (those occurring in some rule’s head) are
called intentional database relations, or IDB. In our examples, the EDBs
are Actor, Casts, Movie, and the IDBs are Q1, Q2, Q3, B1, B2, Q4.

3.3 No Recursion

In the rule Equation 1, the IDB H is defined in terms of P1, . . . , Pm. The
datalog program is called recursive if some IDB is defined recursively in terms
of itself, either directly, or indirectly. The simplest example of a recursive

6

program one that computes the transitive closure of a graph given by a binary
relation, E(x, y). Here it is:

T (x, y) : −E(x, y)

T (x, z) : −E(x, y), T (y, z)

The EDB is E and the IDB is T . While datalog was introduced precisely
in order to express recursive queries, we will not discuss recursive queries in
class; we consider only non-recursive datalog.

Modern SQL implementations also support recursive queries, but in rather
limited fashion, and with a much more ugly syntax than datalog. The rea-
son is simply that there is very little demand for recursion in commercial
database applications.

However, modern data analytics, sometimes called big data, often do re-
quire recursion, hence the renewed interest in datalog today. For example,
computing the friends-of-friends relationships in a graph, Google’s page-rank
algorithm, computing the centrality score in a social network, are all recursive
queries.

3.4 Adding Negation

A datalog program, recursive or not, can express only monotone queries. To
express non-monotone queries, we need to add negation. As before, we start
with some examples.

The following query returns all movies from 1994 where Kevin Bacon did
not act:

Q5(x) :- Movie(x,y,1994), Actor(z,u,’Bacon’), not Casts(z,x)

Note the use of not: the query says that the predicate Casts(z,x) should
be false. Seems easy, but consider this. There are many actors named Bacon,
thus z may be bound to several actor id’s. What exactly should the query
return? There are two options (a) return every movie x where at least one
of the Bacon’s did not act; or (b) it returns every movie x where none of the
Bacon’s acted. Which one is it? (If you can’t figure out, then read on. . .)

For another example, consider the query below. It returns all actors
whose Bacon number is ≥ 2:

B0(x) :- Actor(x,’Kevin’, ’Bacon’)

7

B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)

Q6(x) :- Actor(x,f,l), not B1(x), not B0(x)

B0 and B1 are as before: they consists of all actors with Bacon number 0
or 1 respectively. The query simply returns the actors that are neither in B0

nor in B1.
Now the formal definition. A datalog rule with negation is a rule as given

by Equation 1, where each Pi is either a relational predicate, the negation of
a relational predicate, or an interpreted predicate. A non-recursive datalog
program with negation is a list of datalog rules with negation, which is non-
recursive as defined earlier.

Exercise What does the datalog programs F2 compute?

F1(x) :- R1(x), not R2(x)

F2(x) :- R1(x), not F1(x)

Exercise The relation Parent(x,y) says that x is the parent of y. For
example the query below finds Mary’s children:

M(x) :- Parent(’Mary’,x)

Write datalog programs to compute the following: (1) All siblings of ’Alice’.
(2) All cousins of ’Bob’. (3) All grandchildren of ’Carol’. (4) All Diane’s chil-
dren that have no children themselves. (5) All people that have no children
without children.

3.5 Safe Datalog

What do these datalog queries compute?

U1(x,y) :- Movie(x,z,1994)

U2(x) :- Movie(x,z,1994), not Casts(u,x)

In the first rule, who is y ? It is undefined, and the query can’t return it:
we say that the first rule is unsafe, and will simply forbid it from datalog.
The second rule is also unsafe, but it is more subtle to see that. Here u is
used in the negation, but it is not bound anywhere else, and there are two
interpretations for not Casts(u,x): (a) there exists u such that Casts(u,x)
is not true, or (b) it is not true that there exists u such that Casts(u,x). We
don’t want such ambiguities, so this rule is also unsafe, and hence forbidden.

8

A datalog rule is safe if every variable appears in a positive relational
atom. A datalog program is safe if all its rules are safe. Every datalog
program must be safe.

3.6 Datalog v.s. SQL

Non-recursive datalog with negation is just another syntax for SQL. In other
words, you should feel comfortable moving back and forth between these two
languages. We illustrate this idea at the end of this tutorial.

3.7 Translation 1: From Non-recursive datalog with
Negation to Relational Algebra

We can now describe our first translation: from non-recurisve datalog with
negation, to RA.

We start with a single rule:

H(x) : −P1, . . . , Pm, not N1, . . . , not Nk

Let y be all variables that appear in P1, . . . , Pm. We translate the rule
into the following RA expression:

H = Πx[Πy(P1 on . . . on Pm)− Πy(P1 on . . . on Pm on N1)− . . .− Πy(P1 on . . . on Pm on Nk)]

For example, consider the rule:

H(x, y) : −R(x, u, v), S(y, u), not T (x, v)

It becomes:

H = Π1,4[Π1,2,3,4(R on2=2 S)− Π1,2,3,4((R on2=2 S) on1=1∧3=2 T)

Why can’t we subtract T directly from R on S, writing something like
Π(R on S − T) ? In other words, why do we need to join T with R and S
before subtracting ? Make sure you understand why.

9

Once you understood how to translate one rule, translating an entire
program is easy. Let H1, H2, . . . , Hm be all the IDB predicates occurring in
the datalog rule, in this order. For each predicates Hi, construct a relational
algebra expression for each rule defining Hi, as shown above, then take their
union: note that each such expression may refer to H1, . . . , Hi−1, for which
we simply substitute with their definitions.

Exercise: Translate Q4 and Q5 to RA. Translate the five queries you
wrote earlier on the Parent table to RA.

4 The Relational Calculus

The Relational Calculus (RC) is the same as First Order Logic, and the
same as Predicate Logic. We will cover RC only briefly in class, discussing
its salient features, such as universal and existential quantifiers. The reason
why you should know RC is precisely to master the use of these quantifiers.
Actually, you already know RC! You have encountered it in Discrete Mathe-
matics, under the name Predicate Logic: this is the same as RC. We review
RC below, giving a complete definition of RC: however, to refresh your mem-
ory about all its subtleties, please review it from your favorite textbook in
Discrete Mathematics.

4.1 Language Definition

A Relational Predicate P is a formula given by the following grammar:

P ::= A | P ∧ P | P ∨ P | ¬P | ∃x.P | ∀x.P (2)

Here A stands for an atomic predicate, which is either a relational predi-
cate or an interpreted predicate, as in Subsection 3.2. The other connectives
should be familiar from Discrete Mathematics: and, or, negation, existential
quantifier, and universal quantifier.

A Query in the Relational Calculus is an expression of the form:

Q(x) ≡P

10

where P is an expression given by the grammar in Equation 2 and x are its
free variables1

Don’t panic yet, the language is actually quite simple. Let’s look at some
examples.

Find all movies made in 1940:

Q7(y) ≡∃x.Movie(x, y, 1940)

Note how we manage variables: x is existentially quantified, hence the only
free variable is y, so we write it as head variable in Q7.

Find the names of all actors who acted in movies from 1940:

Q8(f, l) ≡∃x.∃y.∃z.∃y.Actor(z, f, l) ∧ Casts(z, x) ∧ Movie(x, y, 1940)

Exercise Write the SQL query from Section 1 in RC. Note: you need to
use only existential quantifiers.

The power of universal quantifiers The true power of RC comes from
the use of universal quantifiers. Consider for example the following query:
find all actors who acted only in 1940:

Q9(f, l) ≡∃x.(Actor(z, f, l) ∧ ∀y.∀v.(Casts(z, x) ∧ Movie(x, y, v)⇒ v = 1940))

Here⇒ is logical implication (you probably know what it means; if not, then
read below). To appreciate RC, try to write this query in SQL, or in RA: it
is possible, but much harder.

Given the Parent(x,y) relation, find all persons such that all their chil-
dren have children2:

M(x) ≡ ∀y.Parent(x, y)⇒ ∃z.Parent(y, z)

1The set of free variables in P , denoted Vars(P), is defined formally by:

Vars(R(t1, . . . , tk)) = {ti | ti = a variable }
Vars(P1 ∧ P2) = Vars(P1 ∨ P2) = Vars(P1) ∪Vars(P2)

Vars(¬P) = Vars(P)

Vars(∃x.P) = Vars(∀x.P) = Vars(P)− {x}

2This query is actually incorrect, because it is not domain independent (read on to find
out what that means). Exercise: modify it to make it domain dependent.

11

Exercise Write the following queries in the relational calculus.

• Find actors who played in every year of their careers. That is, return
an actor if she played in (say) exactly in 1950, 51, 52, 53, 54, but don’t
return that actor is she played in 1950, 52, 53, 54 (there is a gap at
51). In this query you may use interpreted predicates like x < y and
x+ 1 = y.

• Find actors that played only in movies where Kevin Bacon also played.

• Find all movies that have only actors that acted only in movies where
Kevin Bacon also played.

Review of predicate logic At this point, it is useful to recall some very
basic stuff from predicate logic:

• P1 ⇒ P2 is a notation for ¬P1 ∨ P2. We will freely use ⇒ in RC.

• De Morgan: ¬(P1∧P2) ≡ (¬P1)∨(¬P2) and ¬(P1∨P2) ≡ (¬P1)∧(¬P2).

• Same quantifiers commute: ∃x.∃y.P ≡ ∃y.∃x.P and ∀x.∀y.P ≡ ∀y.∀x.P .

• Different quantifiers do not commute in general: ∃x.∀y.P 6≡ ∀y.∃x.P .

• De Morgan for quantifiers: ¬(∃x.P) ≡ ∀x.(¬P) and ¬(∀x.P) ≡ ∃x.(¬P).

RC v.s. datalog Finally, let’s discuss the relationship between datalog
and RC. The key fact to remember is that a datalog rule has only existen-
tial quantifiers: every variable in the body that is not a head variable is
existentially quantified. For example, recall the query Q5:

Q5(x) :- Movie(x,y,1994), Actor(z,’Kevin’,’Bacon’), not Casts(z,x)

This is equivalent to:

Q5(x) ≡ ∃y.∃z.(Movie(x, y, 1944) ∧ Actor(z, ’Kevin’, ’Bacon’) ∧ ¬Casts(z, x))

Now the answer to our earlier question becomes obvious: it is (a).

12

4.2 The Drinkers-Bars-Beers Example

This is a famous example, first used by Ullman. Consider the relational
schema:

Likes(drinker, beer)

Frequents(drinker, bar)

Serves(bar, beer)

For example, the query below lists all bars that serve some beer that none
of their patrons like:

Q10(x) ≡∃y.Serves(x, y) ∧ ∀z.(Freqents(z, x)⇒ ¬Likes(z, y))

Write each query below in RC.

• Find all drinkers that frequent some bar that serves some beer that
they like.

• Find all drinkers that frequent only bars that serve some beer that they
like.

• Find all drinkers that frequent some bar that serves only beer that they
like.

• Find all drinkers that frequent some bar that serves some beer that
they don’t like.

• Find all drinkers that ferquent some bar that serves only beer that they
don’t like.

• Find all drinkers that frequent only bars that serve some beer that they
don’t like.

• Find all drinkers that frequent only bars that serve only beer that they
don’t like.

Make sure you write simple RC queries for each question; the idea is that
one can go from English to RC almost automatically.

13

4.3 Domain Independent RC

As with datalog, we can write in RC queries that make no sense. Consider
the following query:

F (t) ≡∀y.∃x.Movie(x, t, y)

The query returns the titles that were made in every year. It will return
no answers at all on the IMDB dataset, since no movie title was produced
in every single year. One movie that comes close is “Reunion”, which is a
title given to movies made in 40 different years, 1932, 1936, 1954, 1955, . . . ,
2008, and 2009. But let’s imagine that “Reunion” were made every single
year, so that the query should return it. But what does every year even mean
? Should it mean every year from, say, 1900 to 2011 ? Or every year from
1890 to 2015 ? Thinking about it, you realize that the answer to the query
depends not only on what is in the table Movie, but also on the domain
for the year variable y. If “every y” means “every y in [1900, 2011]” then
the query has one meaning; but if “every y” means “every y in [0, 2020]”
then the query has a different meaning. We say that the query F is domain
dependent. A domain dependent query makes no sense in databases, since we
are interested only in querying the tables in the database, not the domain.

In Mathematics we don’t hesitate writing sentences that depend on the
domain. For example we write ∀x.∃y.y < x: is it true or false ? Well, it
depends on the domain. Over the natural numbers the sentence is false (it
fails for x = 0); over integers, or rationals, or reals, the sentence is true.

A query in RC must be domain independent, i.e. its answer must depend
only on the relations in the database, not on the domain. This is the same
as safety in datalog rules. However, achieving domain independence in RC
is trickier than safety in datalog: we won’t say how to do that, but will show
how not to write queries. Below is a list of domain dependent queries: don’t
write queries like that, but make sure you understand why they are domain
dependent.

F1(x, y) ≡∃z.Movie(x, z, 1994) ∧ y 6= z

F2(x) ≡∃z.∃u.(Movie(x, z, 1994) ∧ ¬Casts(u, x))

F2(u, v) ≡∃f.∃l.Actor(u, f, l) ∨ ∃t.∃y.Movie(v, t, y)

14

4.4 Translation 2: from RC to Non-recursive datalog
with Negation

Consider a Relational Calculus query, Equation 2. To translate it into non-
recursive datalog with negation, start by writing down all its subexpressions,
call them P1, P2, . . . , Pm. List smaller expressions first, then larger expres-
sions. Make the following changes in the subexpressions P1, . . . , Pm:

• Remove universal quantifiers by using de Morgan’s laws: ∀z.Pi ≡
¬∃z.¬Pi.

• Ensure that every negation occurs in a context Pi∧¬Pj, and every free
variable in Pj also occur in Pi. This is always possible3.

Let x1, . . . ,xm be the free variables in P1, P2, . . . , Pm. For each subexpression
Pi, define a query Hi, for i = 1,m:

H1(x1) ≡P1

. . .

Hm(xm) ≡Pm

Next, translate every rule Hi ≡ Pi into non-recursive datalog, depending on
what operation Pi performs last (refer to Equation 2):

3For many queries in practice this assumption already holds. When it doesn’t hold,
we replace a subformula ¬Pj with D(z1) ∧ . . . ∧ D(zk) ∧ ¬Pj , where z1, . . . , zk are the
free variables in Pj and D is the formula computing the active domain of the database,
that is, all the constants that occur in any attribute of any relation. For example, for the
drinker-bars-beers example, the active domain is computed as follows:

D(z) :- Frequents(z,x)

D(z) :- Frequents(x,z)

D(z) :- Likes(z,x)

D(z) :- Likes(x,z)

D(z) :- Serves(z,x)

D(z) :- Serves(x,z)

15

Atomic Predicate If Pi is a relational atomic predicate P (t1, . . . , tk) then
the datalog rule is:

Hi(xi) : −P (t1, . . . , tk)

Conjunction If Pi = Pj ∧ Pk then the datalog rule is:

Hi(xi) : −Hj(xj), Hk(xk)

The rule is safe because xi = xj ∪ xk (why ?).

Disjunction If Pi = Pj ∨ Pk then compute Hi using two datalog rules:

Hi(xi) : −Hj(xj)

Hi(xi) : −Hk(xk)

Both rules are safe because xi = xj = xk. (Why ?)

Negation By our assumption negation occurs in the following context: Pi =
Pk ∧ ¬Pj. The datalog rule is:

Hi(xi) : −Hk(xk),¬Hj(xj)

Existential quantifier If Pi = ∃z.Pj then xi = xj − {z} and the datalog
rule is:

Hi(xi) : −Hj(xj)

4.5 Example of a Translation

Consider the following query:

Q11(x) ≡∃y.Likes(x, y) ∧ ∀z.(Serves(z, y)⇒ Frequents(x, z))

We first rewrite Q11 by applying de Morgan’s law to the universal quan-
tifier, then to ⇒ (recall that ¬(A⇒ B) ≡ A ∧ ¬B):

Q11(x) =∃y.Likes(x, y) ∧ ¬∃z.(Serves(z, y) ∧ ¬Frequents(x, z))

16

The first ¬ satisfies our assumption: it occurs in the context Likes(x, y) ∧
¬(. . .) and the free variables in (. . .) are x and y, so they both occur in the
non-negated formula, Likes(x, y).

The second ¬ does not satisfy our assumption: it occurs in the context
Serves(z, y)∧¬Frequents(x, z), so the negated predicate has the extra vari-
able x. However, note that the outer predicate Likes(x, y) binds x, so the
query is equivalent to the following:

Q11(x) ≡∃y.Likes(x, y) ∧ ¬∃z.(Likes(x, y) ∧ Serves(z, y) ∧ ¬Frequents(x, z))

Now the query satisfies our assumptions. There are 7 subformulas, and for
each we define a new IDB:

H1(x, z) ≡Frequents(x, z)

H2(y, z) ≡Serves(z, y)

H3(x, y) ≡Likes(x, y)

H4(x, y, z) ≡Likes(x, y) ∧ Serves(z, y) ∧ ¬Frequents(x, z)

H5(x, y) ≡∃z.(Likes(x, y) ∧ Serves(z, y) ∧ ¬Frequents(x, z))

H6(x, y) ≡Likes(x, y) ∧ ¬∃z.(Likes(x, y) ∧ Serves(z, y) ∧ ¬Frequents(x, z))

H7(x) ≡∃y.Likes(x, y) ∧ ¬∃z.(Likes(x, y) ∧ Serves(z, y) ∧ ¬Frequents(x, z))

(We took one shortcut: the formula H4 should be split into two: first H′4(x, y, z) =
Likes(x, y) ∧ Serves(z, y), then H4(x, y, z) = H′4(x, y, z) ∧ ¬Frequents(x, z).
Instead, we lumped them together into a single formula, for simplicity.)

Now the datalog program follows immediately, by following the method
described above:

H1(x, z) : −Frequents(x, z)

H2(y, z) : −Serves(z, y)

H3(x, y) : −Likes(x, y)

H4(x, y, z) : −H3(x, y), H2(z, y), not H1(x, z)

H5(x, y) : −H4(x, y, z)

H6(x, y) : −H3(x, y), not H5(x, y)

H7(x) : −H6(x, y)

17

We can simplify this, by removing the IDB’s H4 and H6, writing:

H1(x, z) : −Frequents(x, z)

H2(y, z) : −Serves(z, y)

H3(x, y) : −Likes(x, y)

H5(x, y) : −H3(x, y), H2(z, y), not H1(x, z)

H7(x) : −H3(x, y), not H5(x, y)

Simplify it further, by removing H1, H2, H3:

H5(x, y) : −Likes(x, y), Serves(z, y), not Frequents(x, z)

H7(x) : −Likes(x, y), not H5(x, y)

The SQL expression follows easily from the datalog program:

Q11: select distinct l.drinker

from Likes l

where not exists

(select distinct *

from Serves s, Likes l2

where s.beer = l2.beer

and l.drinker = l2.drinker

and l.beer = l2.beer

and not exists (select distinct *

from Frequents f

where f.drinker = l2.drinker

and f.bar = s.bar))

Of course we don’t need to eliminate duplicates before checking if a sub-
query is non-empty, so we can drop the distinct in subqueries. More subtly,
Likes l2 is actually not needed. The query can be further simplified, and
becomes:

Q11: select distinct l.drinker

from Likes l

where not exists

18

(select *

from Serves s

where s.beer = l.beer

and not exists (select *

from Frequents f

where f.drinker = l.drinker

and f.bar = s.bar))

4.6 Translation 3: from RA to RC

Finally, we close the loop by showing how to translate from RA to RC. This
is very easy, but it is rarely ever needed.

Selection σC(R) is translated into P ∧ C, where P is the translation of R.

Projection ΠA(R) is translated into ∃z1 . . . ∃zm.P , where P is the transla-
tion of R, and z1, . . . , zm are its free variables that are not included in
the list of attributes A.

Join R1 onC R2 is translated into P1∧P2∧C, where P1, P2 are the translations
of R1, R2.

Union R1 ∪R2 is translated into P1 ∨ P2.

Difference R1 −R2 is translated into P1 ∧ ¬P2.

Summarizing:

Theorem 4.1 The following three languages can express exactly the same
sets of queries: (1) Relational Algebra (RA), (2) non-recursive datalog with
negation, (3) Relational Calculus (RC).

19

	Introduction
	Relational Algebra
	Non-Recursive Datalog With Negation
	Non-Recursive Datalog
	Terminology
	No Recursion
	Adding Negation
	Safe Datalog
	Datalog v.s. SQL
	Translation 1: From Non-recursive datalog with Negation to Relational Algebra

	The Relational Calculus
	Language Definition
	The Drinkers-Bars-Beers Example
	Domain Independent RC
	Translation 2: from RC to Non-recursive datalog with Negation
	Example of a Translation
	Translation 3: from RA to RC

