
Introduction to Data Management
CSE 344

Lecture 26:
Parallel Databases and MapReduce

CSE 344 - Fall 2013 1

HW8

•  MapReduce (Hadoop) w/ declarative language (Pig)
•  Cluster will run in Amazon’s cloud (AWS)

–  Give your credit card
–  Click, click, click… and you have a MapReduce cluster

•  We will analyze a real 0.5TB graph
•  Processing the entire data takes hours

–  Problems #1,#2,#3: queries on a subset only
–  Problem #4: entire data

CSE 344 - Fall 2013 2

Amazon Warning

•  “We HIGHLY recommend you remind students to
turn off any instances after each class/session – as
this can quickly diminish the credits and start
charging the card on file. You are responsible for
the overages.”

•  “AWS customers can now use billing alerts to help
monitor the charges on their AWS bill. You can get
started today by visiting your Account Activity page to
enable monitoring of your charges. Then, you can set
up a billing alert by simply specifying a bill threshold
and an e-mail address to be notified as soon as your
estimated charges reach the threshold.”

CSE 344 - Fall 2013 3

Outline

•  Today: Query Processing in Parallel DBs
•  Next Lecture: Parallel Data Processing at

Massive Scale (MapReduce)
–  Reading assignment:

Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 344 - Fall 2013 4

Review

•  Why parallel processing?

•  What are the possible architectures for a
parallel database system?

•  What are speedup and scaleup?

CSE 344 - Fall 2013 5

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

•  Selection: σA=123(R)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

CSE 344 - Fall 2013 6

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

•  Selection: σA=123(R)
–  Scan file R, select records with A=123

•  Group-by: γA,sum(B)(R)
–  Scan file R, insert into a hash table using attr. A as key
–  When a new key is equal to an existing one, add B to the value

•  Join: R ⋈ S
–  Scan file S, insert into a hash table using attr. B as key
–  Scan file R, probe the hash table using attr. B

CSE 344 - Fall 2013 7

Parallel Query Processing

How do we compute these operations on a shared-nothing parallel
db?

•  Selection: σA=123(R) (that’s easy, won’t discuss…)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

Before we answer that: how do we store R (and S) on a shared-
nothing parallel db?

CSE 344 - Fall 2013 8

Horizontal Data Partitioning

CSE 344 - Fall 2013 9

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE 344 - Fall 2013 10

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

CSE 344 - Fall 2013 11

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning

•  Block Partition:
–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 < t.A < vi

12 CSE 344 - Fall 2013

Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

•  R is hash-partitioned on A

•  R is block-partitioned

•  R is hash-partitioned on K

13 CSE 344 - Fall 2013

Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
•  R is block-partitioned or hash-partitioned on K

14

R1 R2 RP . . .

R1’ R2’ RP’

. . .

Reshuffle R
on attribute A

CSE 344 - Fall 2013

Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

15 CSE 344 - Fall 2013

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, S2 RP, SP

Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

16

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE 344 - Fall 2013

Initially, both R and S are horizontally partitioned on K1 and K2

Speedup and Scaleup

•  Consider:
–  Query: γA,sum(C)(R)
–  Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?

•  If we double both P and the size of R, what is
the new running time?

CSE 344 - Fall 2013 17

Speedup and Scaleup

•  Consider:
–  Query: γA,sum(C)(R)
–  Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?
–  Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
–  Same (each server holds the same # of chunks)

CSE 344 - Fall 2013 18

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

CSE 344 - Fall 2013 19

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSE 344 - Fall 2013 20

Parallel DBMS

•  Parallel query plan: tree of parallel operators
Intra-operator parallelism
–  Data streams from one operator to the next
–  Typically all cluster nodes process all operators

•  Can run multiple queries at the same time
Inter-query parallelism
–  Queries will share the nodes in the cluster

•  Notice that user does not need to know how
his/her SQL query was processed

CSE 344 - Fall 2013 21

22

Loading Data into a Parallel DBMS

AMP = “Access Module Processor” = unit of parallelism
CSE 344 - Fall 2013

Example using Teradata System

23

Example Parallel Query Execution

SELECT *
 FROM Order o, Line i
 WHERE o.item = i.item
 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items ordered

CSE 344 - Fall 2013

Order(oid, item, date), Line(item, …)

24

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

CSE 344 - Fall 2013

Order(oid, item, date), Line(item, …)

25

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSE 344 - Fall 2013

Order(oid, item, date), Line(item, …)

26

Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSE 344 - Fall 2013

Order(oid, item, date), Line(item, …)

Parallel Dataflow Implementation

•  Use relational operators unchanged

•  Add a special shuffle operator
–  Handle data routing, buffering, and flow control
–  Inserted between consecutive operators in the query plan
–  Two components: ShuffleProducer and ShuffleConsumer
–  Producer pulls data from operator and sends to n consumers

•  Producer acts as driver for operators below it in query plan
–  Consumer buffers input data from n producers and makes it

available to operator through getNext interface

•  You will use this extensively in 444

27 CSE 344 - Fall 2013

Parallel Data Processing
at Massive Scale

CSE 344 - Fall 2013 28

Data Centers Today

•  Large number of commodity servers,
connected by high speed, commodity network

•  Rack: holds a small number of servers
•  Data center: holds many racks

CSE 344 - Fall 2013 29

Data Processing
at Massive Scale

•  Want to process petabytes of data and more

•  Massive parallelism:
–  100s, or 1000s, or 10000s servers
–  Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
–  Then 10000 servers have one failure / hour

CSE 344 - Fall 2013 30

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks, typically

64MB
•  Each chunk is replicated several times (≥3),

on different racks, for fault tolerance
•  Implementations:

–  Google’s DFS: GFS, proprietary
–  Hadoop’s DFS: HDFS, open source

CSE 344 - Fall 2013 31

MapReduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

32 CSE 344 - Fall 2013

33

Observation: Your favorite parallel algorithm…

Map

(Shuffle)

Reduce

CSE 344 - Fall 2013

Typical Problems Solved by MR

•  Read a lot of data
•  Map: extract something you care about from each

record
•  Shuffle and Sort
•  Reduce: aggregate, summarize, filter, transform
•  Write the results

CSE 344 - Fall 2013 34

Outline stays the same,
map and reduce change to fit
the problem

slide source: Jeff Dean

Data Model
Files !

A file = a bag of (key, value) pairs

A MapReduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

35 CSE 344 - Fall 2013

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Ouput:

bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

36 CSE 344 - Fall 2013

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input:
(intermediate key, bag of values)

•  Output: bag of output (values)

System groups all pairs with the same intermediate

key, and passes the bag of values to the REDUCE
function

37 CSE 344 - Fall 2013

Example

•  Counting the number of occurrences of each
word in a large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result)); 38

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

39

Jobs v.s. Tasks

•  A MapReduce Job
–  One single “query”, e.g. count the words in all docs
–  More complex queries may consists of multiple jobs

•  A Map Task, or a Reduce Task
–  A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 344 - Fall 2013 40

Workers

•  A worker is a process that executes one task
at a time

•  Typically there is one worker per processor,
hence 4 or 8 per node

CSE 344 - Fall 2013 41

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

MapReduce Execution Details

CSE 344 - Fall 2013 43

Map

(Shuffle)

Reduce

Data	 not	
necessarily	 local	

Intermediate	 data	
goes	 to	 local	 	 disk	

Output	 to	 disk,	
replicated	 in	 cluster	

File	 system:	 GFS	
or	 HDFS	

Task

Task

Local	 storage	 `	

MR Phases

•  Each Map and Reduce task has multiple phases:

44 CSE 344 - Fall 2013

Example: CloudBurst

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

Map Reduce Sort Shuffle Slot ID

Time

45

Implementation
•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M map

tasks, keeps track of their progress
•  Workers write their output to local disk, partition

into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
46 CSE 344 - Fall 2013

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

47 CSE 344 - Fall 2013

Interesting Implementation Details

Backup tasks:
•  Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:
–  Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
–  The cluster scheduler has scheduled other tasks on

that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

48 CSE 344 - Fall 2013

MapReduce Summary

•  Hides scheduling and parallelization details

•  However, very limited queries
–  Difficult to write more complex queries
–  Need multiple MapReduce jobs

•  Solution: declarative query language

49 CSE 344 - Fall 2013

Declarative Languages on MR

•  PIG Latin (Yahoo!)
–  New language, like Relational Algebra
–  Open source

•  HiveQL (Facebook)
–  SQL-like language
–  Open source

•  SQL / Tenzing (Google)
–  SQL on MR
–  Proprietary

50 CSE 344 - Fall 2013

Parallel DBMS vs MapReduce
•  Parallel DBMS

–  Relational data model and schema
–  Declarative query language: SQL
–  Many pre-defined operators: relational algebra
–  Can easily combine operators into complex queries
–  Query optimization, indexing, and physical tuning
–  Streams data from one operator to the next without blocking
–  Can do more than just run queries: Data management

•  Updates and transactions, constraints, security, etc.

51 CSE 344 - Fall 2013

Parallel DBMS vs MapReduce
•  MapReduce

–  Data model is a file with key-value pairs!
–  No need to “load data” before processing it
–  Easy to write user-defined operators
–  Can easily add nodes to the cluster (no need to even restart)
–  Uses less memory since processes one key-group at a time
–  Intra-query fault-tolerance thanks to results on disk
–  Intermediate results on disk also facilitate scheduling
–  Handles adverse conditions: e.g., stragglers
–  Arguably more scalable… but also needs more nodes!

52 CSE 344 - Fall 2013

Review: Parallel DBMS

53
From: Greenplum Database Whitepaper

SQL Query

