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HW8 

•  MapReduce (Hadoop) w/ declarative language (Pig) 
•  Cluster will run in Amazon’s cloud (AWS) 

–  Give your credit card 
–  Click, click, click… and you have a MapReduce cluster 

•  We will analyze a real 0.5TB graph 
•  Processing the entire data takes hours 

–  Problems #1,#2,#3: queries on a subset only 
–  Problem #4: entire data 
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Amazon Warning 

•  “We HIGHLY recommend you remind students to 
turn off any instances after each class/session – as 
this can quickly diminish the credits and start 
charging the card on file. You are responsible for 
the overages.” 

•  “AWS customers can now use billing alerts to help 
monitor the charges on their AWS bill. You can get 
started today by visiting your Account Activity page to 
enable monitoring of your charges. Then, you can set 
up a billing alert by simply specifying a bill threshold 
and an e-mail address to be notified as soon as your 
estimated charges reach the threshold.” 
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Outline 

•  Today: Query Processing in Parallel DBs 
•  Next Lecture: Parallel Data Processing at 

Massive Scale (MapReduce) 
–  Reading assignment: 

Chapter 2 (Sections 1,2,3 only) of Mining of 
Massive Datasets, by Rajaraman and Ullman 
http://i.stanford.edu/~ullman/mmds.html  
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Review 

•  Why parallel processing? 

•  What are the possible architectures for a 
parallel database system? 

•  What are speedup and scaleup? 
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Basic Query Processing: 
Quick Review in Class 

Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), no indexes, how do we compute: 

•  Selection:  σA=123(R) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 
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Basic Query Processing: 
Quick Review in Class 

Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), no indexes, how do we compute: 

•  Selection:  σA=123(R) 
–  Scan file R, select records with A=123 

•  Group-by:  γA,sum(B)(R) 
–  Scan file R, insert into a hash table using attr. A as key 
–  When a new key is equal to an existing one, add B to the value 

•  Join:  R ⋈ S 
–  Scan file S, insert into a hash table using attr. B as key 
–  Scan file R, probe the hash table using attr. B 
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Parallel Query Processing 

How do we compute these operations on a shared-nothing parallel 
db? 

•  Selection:  σA=123(R)    (that’s easy, won’t discuss…) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 

Before we answer that: how do we store R (and S) on a shared-
nothing parallel db? 
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Horizontal Data Partitioning 
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Horizontal Data Partitioning 

CSE 344 - Fall 2013   10 

K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …



Horizontal Data Partitioning 
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… …

K A B

… …

Which tuples 
go to what server? 



Horizontal Data Partitioning 

•  Block Partition:  
–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 < t.A < vi 
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Parallel GroupBy 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
Discuss in class how to compute in each case: 

•  R is hash-partitioned on A 

•  R is block-partitioned 

•  R is hash-partitioned on K 
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Parallel GroupBy 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
•  R is block-partitioned or hash-partitioned on K 

14 

R1  R2  RP  .  .  . 

R1’  R2’  RP’  

.  .  . 

Reshuffle R 
on attribute A 
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Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 
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Speedup and Scaleup 

•  Consider: 
–  Query: γA,sum(C)(R) 
–  Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is 
the new running time? 

•  If we double both P and the size of R, what is 
the new running time? 
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Speedup and Scaleup 

•  Consider: 
–  Query: γA,sum(C)(R) 
–  Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is 
the new running time? 
–  Half (each server holds ½ as many chunks) 

•  If we double both P and the size of R, what is 
the new running time? 
–  Same (each server holds the same # of chunks) 

CSE 344 - Fall 2013  18 



Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming good 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 
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Parallel DBMS 

•  Parallel query plan: tree of parallel operators 
Intra-operator parallelism 
–  Data streams from one operator to the next 
–  Typically all cluster nodes process all operators 

•  Can run multiple queries at the same time 
Inter-query parallelism 
–  Queries will share the nodes in the cluster 

•  Notice that user does not need to know how 
his/her SQL query was processed 
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Loading Data into a Parallel DBMS 

AMP = “Access Module Processor” = unit of parallelism 
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Example Parallel Query Execution 

SELECT *  
  FROM Order o, Line i 
 WHERE o.item = i.item 
   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items ordered 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

AMP 1 AMP 2 AMP 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

scan 
Item i 

AMP 1 AMP 2 AMP 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 
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Example Parallel Query Execution 

AMP 1 AMP 2 AMP 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 
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Parallel Dataflow Implementation 

•  Use relational operators unchanged  

•  Add a special shuffle operator 
–  Handle data routing, buffering, and flow control 
–  Inserted between consecutive operators in the query plan 
–  Two components: ShuffleProducer and ShuffleConsumer 
–  Producer pulls data from operator and sends to n consumers 

•  Producer acts as driver for operators below it in query plan 
–  Consumer buffers input data from n producers and makes it 

available to operator through getNext interface 

•  You will use this extensively in 444 
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Parallel Data Processing 
at Massive Scale 
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Data Centers Today 

•  Large number of commodity servers, 
connected by high speed, commodity network 

•  Rack: holds a small number of servers 
•  Data center: holds many racks 

CSE 344 - Fall 2013   29 



Data Processing 
at Massive Scale 

•  Want to process petabytes of data and more 

•  Massive parallelism:  
–  100s, or 1000s, or 10000s servers 
–  Many hours 

•  Failure: 
–  If medium-time-between-failure is 1 year 
–  Then 10000 servers have one failure / hour 
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Distributed File System (DFS) 

•  For very large files: TBs, PBs 
•  Each file is partitioned into chunks, typically 

64MB 
•  Each chunk is replicated several times (≥3), 

on different racks, for fault tolerance 
•  Implementations: 

–  Google’s DFS:  GFS, proprietary 
–  Hadoop’s DFS:  HDFS, open source 
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MapReduce 

•  Google: paper published 2004 
•  Free variant: Hadoop 

•  MapReduce = high-level programming model 
and implementation for large-scale parallel 
data processing 
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Observation: Your favorite parallel algorithm… 

Map 

(Shuffle) 

Reduce 
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Typical Problems Solved by MR 

•  Read a lot of data 
•  Map: extract something you care about from each 

record 
•  Shuffle and Sort 
•  Reduce: aggregate, summarize, filter, transform 
•  Write the results 
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Outline stays the same, 
map and reduce change to fit 
the problem 

slide source: Jeff Dean 



Data Model 
Files ! 

A file = a bag of (key, value) pairs 

A MapReduce program: 
•  Input: a bag of (inputkey, value)pairs 
•  Output: a bag of (outputkey, value)pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: (input key, value) 
•  Ouput:  

bag of (intermediate key, value) 

System applies the map function in parallel to all 
(input key, value) pairs in the input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input:  
(intermediate key, bag of values) 

•  Output: bag of output (values) 
 
System groups all pairs with the same intermediate 

key, and passes the bag of values to the REDUCE 
function 
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Example 

•  Counting the number of occurrences of each 
word in a large collection of documents 

•  Each Document 
–  The key = document id (did) 
–  The value = set of words (word) 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”); 

reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 38 



MAP REDUCE 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 
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Jobs v.s. Tasks 

•  A MapReduce Job 
–  One single “query”, e.g. count the words in all docs 
–  More complex queries may consists of multiple jobs 

•  A Map Task, or a Reduce Task 
–  A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker 
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Workers 

•  A worker is a process that executes one task 
at a time 

•  Typically there is one worker per processor, 
hence 4 or 8 per node 
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MAP Tasks REDUCE Tasks 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 



MapReduce Execution Details 
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Map 

(Shuffle) 

Reduce 

Data	  not	  
necessarily	  local	  

Intermediate	  data	  
goes	  to	  local	  	  disk	  

Output	  to	  disk,	  
replicated	  in	  cluster	  

File	  system:	  GFS	  
or	  HDFS	  

Task 

Task 



Local	  storage	  `	  

MR Phases 

•  Each Map and Reduce task has multiple phases: 
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Example: CloudBurst 

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers. 

Map Reduce Sort Shuffle Slot ID 

Time 
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Implementation 
•  There is one master node 
•  Master partitions input file into M splits, by key 
•  Master assigns workers (=servers) to the M map 

tasks, keeps track of their progress 
•  Workers write their output to local disk, partition 

into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map 

workers’ local disks  
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Interesting Implementation Details 

Worker failure: 

•  Master pings workers periodically, 

•  If down then reassigns the task to another 
worker 
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Interesting Implementation Details 

Backup tasks: 
•   Straggler = a machine that takes unusually long 

time to complete one of the last tasks. Eg: 
–  Bad disk forces frequent correctable errors (30MB/s à 

1MB/s) 
–  The cluster scheduler has scheduled other tasks on 

that machine 
•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of the 

last few remaining in-progress tasks 
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MapReduce Summary 

•  Hides scheduling and parallelization details 

•  However, very limited queries 
–  Difficult to write more complex queries 
–  Need multiple MapReduce jobs 

•  Solution: declarative query language 
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Declarative Languages on MR 

•  PIG Latin (Yahoo!) 
–  New language, like Relational Algebra 
–  Open source 

•  HiveQL (Facebook) 
–  SQL-like language 
–  Open source 

•  SQL / Tenzing (Google) 
–  SQL on MR 
–  Proprietary 

50 CSE 344 - Fall 2013   



Parallel DBMS vs MapReduce 
•  Parallel DBMS 

–  Relational data model and schema 
–  Declarative query language: SQL 
–  Many pre-defined operators: relational algebra 
–  Can easily combine operators into complex queries 
–  Query optimization, indexing, and physical tuning 
–  Streams data from one operator to the next without blocking 
–  Can do more than just run queries: Data management 

•  Updates and transactions, constraints, security, etc. 
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Parallel DBMS vs MapReduce 
•  MapReduce 

–  Data model is a file with key-value pairs! 
–  No need to “load data” before processing it 
–  Easy to write user-defined operators 
–  Can easily add nodes to the cluster (no need to even restart) 
–  Uses less memory since processes one key-group at a time 
–  Intra-query fault-tolerance thanks to results on disk 
–  Intermediate results on disk also facilitate scheduling 
–  Handles adverse conditions: e.g., stragglers 
–  Arguably more scalable… but also needs more nodes! 
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Review: Parallel DBMS 

53 
From: Greenplum Database Whitepaper  

SQL Query 


