
1 

Introduction to Data Management 
CSE 344 

Lecture 8: SQL Wrap-up 

CSE 344 - Fall 2013 



Announcements 

•  Homework 2: due tonight! 

•  Monday: guest lecture by Sudeepa Roy 

•  Webquiz 3: due on Monday night! 

CSE 344 - Fall 2013 2 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=? 

SELECT *  
FROM V 
WHERE N=? 

Suppose we have queries like these: 

Which of these indexes are helpful for each query? 

SELECT *  
FROM V 
WHERE M=? and N=? 

1.  Index on V(M) 
2.  Index on V(N) 
3.  Index on V(M,N) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), (1,3), …, (1,100), (2,1),…, (100, 100) 

SELECT *  
FROM V 
WHERE M=3 and N=5 

Index on V(M) 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

List of pointers to records (3,1), (3,2), …, (3,100) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

SELECT *  
FROM V 
WHERE M=3 and N=5 

Index on V(M) 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

List of pointers to records (3,1), (3,2), …, (3,100) 

The index is 
useful here 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), (1,3), …, (1,100), (2,1),…, (100, 100) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

SELECT *  
FROM V 
WHERE M=3 and N=5 

Index on V(M) 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

List of pointers to records (3,1), (3,2), …, (3,100) 

The index is 
useful here Useless here 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), (1,3), …, (1,100), (2,1),…, (100, 100) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

SELECT *  
FROM V 
WHERE M=3 and N=5 

Index on V(M) 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

List of pointers to records (3,1), (3,2), …, (3,100) 

The index is 
useful here Useless here 

Can we use 
it here? 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), (1,3), …, (1,100), (2,1),…, (100, 100) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

SELECT *  
FROM V 
WHERE M=3 and N=5 

Where does  
this index help? 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

Index on V(M) Index on V(N) 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), (1,3), …, (1,100), (2,1),…, (100, 100) 



Review: Indexes 
V(M, N); 

SELECT *  
FROM V 
WHERE M=3 

SELECT *  
FROM V 
WHERE N=5 

SELECT *  
FROM V 
WHERE M=3 and N=5 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

B+
Tr
ee
	


1 

2 

3 

4 

… 

… 

100 

Index on V(M) Index on V(N) 

B+
Tr
ee
	


1,1 

1,2 

… 

… 

3,4 

3,5 

… 

Single pointer  
to record (3,5) 

Index on V(M,N) 

And this? 

Suppose V(M,N) contains 10,000 records: 
(1,1), (1,2), (1,3), …, (1,100), (2,1),…, (100, 100) 



Review: Indexes 

Suppose M is the primary key in V(M, N): 
 
How do the two indexes V(M) and V(M,N) 
compare?   
 
Consider their utility for these predicates: 
•  M=5 
•  M=5 and N=7 

CSE 344 - Fall 2013 10 



11 

Nested Queries 

•  Subqueries can occur in every clause: 
–  SELECT 
–  FROM 
–  WHERE 

•  When we must use nested subqueries: 
–  Non-monotone queries 
–  Queries making complex use of aggregates 
–  “Finding witnesses” 

CSE 344 - Fall 2013 



12 

Practice these queries in SQL 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Find drinkers that frequent only bars that serves only beer they like. 

x:     ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

x:    ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 

x:    ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z)) 

Ullman’s drinkers-bars-beers example 

Find drinkers that frequent some bar that serves only beers they like. 

x:     ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z)) 



Unnesting Aggregates 

Find the number of companies in each city 

SELECT DISTINCT X.city, (SELECT count(*)  
                                            FROM Company Y  
                                            WHERE X.city = Y.city) 
FROM  Company X 

SELECT city,  count(*) 
FROM   Company 
GROUP BY city 

Equivalent queries 

Note: no need for DISTINCT 
(DISTINCT is the same as GROUP BY) 
CSE 344 - Fall 2013 

13 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Unnesting Aggregates 

Find the number of products made in each city 
SELECT DISTINCT X.city, (SELECT count(*)  
                                                FROM Product Y, Company Z 
                                                WHERE Z.cid=Y.cid 

     AND Z.city = X.city) 
FROM  Company X 

14 

Product (pname,  price, cid) 
Company(cid, cname, city) 

SELECT X.city, count(*) 
FROM Company X, Product Y 
WHERE X.cid=Y.cid  
GROUP BY X.city 

NOT equivalent ! 
You should know why! 



GROUP BY v.s. Nested Queries 

SELECT       product, Sum(quantity) AS TotalSales 
FROM          Purchase 
WHERE       price > 1 
GROUP BY  product 

SELECT DISTINCT  x.product, (SELECT Sum(y.quantity) 
                                                      FROM     Purchase y 
                                                      WHERE x.product = y.product  
                                                                   AND y.price > 1) 
                                                    AS TotalSales 
FROM          Purchase x 
WHERE       x.price > 1 

Why twice ? 15 

Purchase(pid, product, quantity, price) 



More Unnesting 

CSE 344 - Fall 2013 16 

Author(login,name) 
Wrote(login,url) 

Find authors who wrote ≥ 10 documents: 



More Unnesting 

CSE 344 - Fall 2013 17 

SELECT DISTINCT Author.name 
FROM          Author 
WHERE        (SELECT count(Wrote.url) 
                      FROM Wrote 
                      WHERE Author.login=Wrote.login) 
                          > 10 

This is 
SQL by 
a novice 

Attempt 1: with nested queries 

Author(login,name) 
Wrote(login,url) 

Find authors who wrote ≥ 10 documents: 



More Unnesting 

CSE 344 - Fall 2013 18 

Attempt 1: with nested queries 

Author(login,name) 
Wrote(login,url) 

Find authors who wrote ≥ 10 documents: 

SELECT       Author.name 
FROM          Author, Wrote 
WHERE       Author.login=Wrote.login 
GROUP BY Author.name 
HAVING      count(wrote.url) > 10 

This is 
SQL  by 

an expert 

Attempt 2: using GROUP BY and HAVING 



Finding Witnesses 

For each city, find the most expensive product made in that city 

CSE 344 - Fall 2013 19 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 

SELECT x.city, max(y.price) 
FROM Company x, Product y 
WHERE x.cid = y.cid 
GROUP BY x.city; 

Finding the maximum price is easy… 

But we need the witnesses, i.e. the products with max price 
CSE 344 - Fall 2013 20 

For each city, find the most expensive product made in that city 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 
To find the witnesses, compute the maximum price 
in a subquery 

CSE 344 - Fall 2013 21 

SELECT DISTINCT u.city, v.pname, v.price 
FROM Company u, Product v, 
     (SELECT x.city, max(y.price) as maxprice 
      FROM Company x, Product y 
      WHERE x.cid = y.cid 
      GROUP BY x.city) w 
WHERE u.cid = v.cid 
       and u.city = w.city 
       and v.price=w.maxprice; 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 

There is a more concise solution here: 

CSE 344 - Fall 2013 22 

SELECT u.city, v.pname, v.price 
FROM Company u, Product v, Company x, Product y 
WHERE u.cid = v.cid and u.city = x.city and x.cid = y.cid 
GROUP BY u.city, v.pname, v.price 
HAVING v.price = max(y.price); 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Finding Witnesses 

And another one: 

CSE 344 - Fall 2013 23 

SELECT u.city, v.pname, v.price 
FROM Company u, Product v 
WHERE u.cid = v.cid 
  and v.price >= ALL (SELECT y.price  
                                  FROM Company x, Product y  
                                  WHERE u.city=x.city  
                                         and x.cid=y.cid); 

Product (pname,  price, cid) 
Company(cid, cname, city) 



Where We Are 

•  Motivation for using a DBMS for managing data 
•  SQL, SQL, SQL 

–  Declaring the schema for our data (CREATE TABLE) 
–  Inserting data one row at a time or in bulk (INSERT/.import) 
–  Modifying the schema and updating the data (ALTER/UPDATE) 
–  Querying the data (SELECT) 
–  Tuning queries (CREATE INDEX) 

•  Next step: More knowledge of how DBMSs work 
–  Client-server architecture 
–  Relational algebra and query execution 

CSE 344 - Fall 2013 24 


