
Introduction to Data Management
CSE 344

Lecture 22: MapReduce

CSE 344 – Winter 2012 1

Where We Are

•  We are talking about parallel query processing

•  There exist two main types of engines:
–  Parallel DBMSs (last lecture)
–  MapReduce and similar systems (this lecture)

CSE 344 – Winter 2012 2

Review: Parallel DBMS

3
From: Greenplum Database Whitepaper

SQL Query

Parallel DBMS

•  Parallel query plan: tree of parallel operators
–  Data streams from one operator to the next
–  Typically all cluster nodes process all operators

•  Can run multiple queries at the same time
–  Queries will share the nodes in the cluster

•  Notice that user does not need to know how
his/her SQL query was processed

CSE 344 – Winter 2012 4

Cluster Computing

CSE 344 – Winter 2012 5

Cluster Computing

•  Large number of commodity servers,
connected by high speed, commodity network

•  Rack: holds a small number of servers
•  Data center: holds many racks

CSE 344 – Winter 2012 6

READING ASSIGNMENT:
Map-reduce (Section 20.2); Chapter 2 (Sections 1,2,3 only)
of Mining of Massive Datasets, by Rajaraman and Ullman
See the course Calendar Website

Cluster Computing

•  Massive parallelism:
–  100s, or 1000s, or 10000s servers
–  Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
–  Then 10000 servers have one failure / hour

CSE 344 – Winter 2012 7

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks, typically

64MB
•  Each chunk is replicated several times (≥3),

on different racks, for fault tolerance
•  Implementations:

–  Google’s DFS: GFS, proprietary
–  Hadoop’s DFS: HDFS, open source

CSE 344 – Winter 2012 8

Map Reduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  Map-reduce = high-level programming model
and implementation for large-scale parallel
data processing

9 CSE 344 – Winter 2012

Data Model
Files !

A file = a bag of (key, value) pairs

A map-reduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

10 CSE 344 – Winter 2012

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Ouput:

bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

11 CSE 344 – Winter 2012

Step 2: the REDUCE Phase
User provides the REDUCE function:
•  Input:
(intermediate key, bag of values)

•  Output: bag of output (values)
System groups all pairs with the same intermediate

key, and passes the bag of values to the REDUCE
function

12 CSE 344 – Winter 2012

Example

•  Counting the number of occurrences of each
word in a large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

Doc(did, word)

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

MAP = GROUP BY,
REDUCE = Aggregate

15

SELECT word, sum(1)
FROM Doc
GROUP BY word

Doc(did, word)

CSE 344 – Winter 2012

Example 2: MR word length count

Abridged Declaration of Independence
A Declaration By the Representatives of the United States of America, in General Congress Assembled.
When in the course of human events it becomes necessary for a people to advance from that subordination in
which they have hitherto remained, and to assume among powers of the earth the equal and independent station
to which the laws of nature and of nature's god entitle them, a decent respect to the opinions of mankind
requires that they should declare the causes which impel them to the change.
We hold these truths to be self-evident; that all men are created equal and independent; that from that equal
creation they derive rights inherent and inalienable, among which are the preservation of life, and liberty, and
the pursuit of happiness; that to secure these ends, governments are instituted among men, deriving their just
power from the consent of the governed; that whenever any form of government shall become destructive of
these ends, it is the right of the people to alter or to abolish it, and to institute new government, laying it's
foundation on such principles and organizing it's power in such form, as to them shall seem most likely to effect
their safety and happiness. Prudence indeed will dictate that governments long established should not be
changed for light and transient causes: and accordingly all experience hath shewn that mankind are more
disposed to suffer while evils are sufferable, than to right themselves by abolishing the forms to which they are
accustomed. But when a long train of abuses and usurpations, begun at a distinguished period, and pursuing
invariably the same object, evinces a design to reduce them to arbitrary power, it is their right, it is their duty, to
throw off such government and to provide new guards for future security. Such has been the patient sufferings
of the colonies; and such is now the necessity which constrains them to expunge their former systems of
government. the history of his present majesty is a history of unremitting injuries and usurpations, among which
no one fact stands single or solitary to contradict the uniform tenor of the rest, all of which have in direct object
the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid
world, for the truth of which we pledge a faith yet unsullied by falsehood.

16

(yellow, 20)
(red, 71)
(blue, 93)
(pink, 6)

Abridged Declaration of Independence
A Declaration By the Representatives of the United States of America, in General
Congress Assembled.
When in the course of human events it becomes necessary for a people to advance from
that subordination in which they have hitherto remained, and to assume among powers of
the earth the equal and independent station to which the laws of nature and of nature's
god entitle them, a decent respect to the opinions of mankind requires that they should
declare the causes which impel them to the change.
We hold these truths to be self-evident; that all men are created equal and independent;
that from that equal creation they derive rights inherent and inalienable, among which are
the preservation of life, and liberty, and the pursuit of happiness; that to secure these
ends, governments are instituted among men, deriving their just power from the consent
of the governed; that whenever any form of government shall become destructive of these
ends, it is the right of the people to alter or to abolish it, and to institute new government,
laying it's foundation on such principles and organizing it's power in such form, as to
them shall seem most likely to effect their safety and happiness. Prudence indeed will

dictate that governments long established should not be changed for light and transient
causes: and accordingly all experience hath shewn that mankind are more disposed to
suffer while evils are sufferable, than to right themselves by abolishing the forms to
which they are accustomed. But when a long train of abuses and usurpations, begun at a
distinguished period, and pursuing invariably the same object, evinces a design to reduce
them to arbitrary power, it is their right, it is their duty, to throw off such government and
to provide new guards for future security. Such has been the patient sufferings of the
colonies; and such is now the necessity which constrains them to expunge their former
systems of government. the history of his present majesty is a history of unremitting
injuries and usurpations, among which no one fact stands single or solitary to contradict
the uniform tenor of the rest, all of which have in direct object the establishment of an
absolute tyranny over these states. To prove this, let facts be submitted to a candid world,
for the truth of which we pledge a faith yet unsullied by falsehood.

Yellow: 10+

Red: 5..9

Blue: 2..4

Pink: = 1

Map Task 1
(204 words)

Map Task 2
(190 words)

(key, value)

(yellow, 17)
(red, 77)
(blue, 107)
(pink, 3)

Example 2: MR word length count

17

Map task 1

(yellow, 17)
(red, 77)
(blue, 107)
(pink, 3)

Map task 2

(yellow, 20)
(red, 71)
(blue, 93)
(pink, 6)

Reduce task
(yellow,[17,20]) à (yellow, 37)

(red,[77,71]) à (red, 148)

(blue,[107,93]) à (blue, 200)

(pink, [3, 6]) à (pink, 9)

Map is a GROUP BY operation
Reduce is an AGGREGATE operation

Example 2: MR word length count

18

Jobs v.s. Tasks

•  A Map-Reduce Job
–  One single “query”, e.g. count the words in all docs
–  More complex queries may consists of multiple jobs

•  A Map Task, or a Reduce Task
–  A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 344 – Winter 2012 19

Workers

•  A worker is a process that executes one task
at a time

•  Typically there is one worker per processor,
hence 4, or 8 per node

CSE 344 – Winter 2012 20

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Workers

Master

Local	
 storage	
 `	

MR Phases

•  Each Map and Reduce task has multiple phases:

22

Implementation
•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M map

tasks, keeps track of their progress
•  Workers write their output to local disk, partition

into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
23 CSE 344 – Winter 2012

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

24

Interesting Implementation Details

Backup tasks:
•  Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:
–  Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
–  The cluster scheduler has scheduled other tasks on

that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

25 CSE 344 – Winter 2012

Map-Reduce Summary

•  Hides scheduling and parallelization details

•  However, very limited queries
–  Difficult to write more complex queries
–  Need multiple map-reduce jobs

•  Solution: declarative query language

26

Declarative Languages on MR

•  PIG Latin (Yahoo!)
–  New language, like Relational Algebra
–  Open source

•  SQL / Tenzing (google)
–  SQL on MR
–  Proprietary

•  Others (won’t discuss):
–  Scope (MS): SQL; proprietary
–  DryadLINQ (MS): LINQ; proprietary
–  Clustera (other UW) : SQL; Not publicly available

27

Parallel DBMS vs MapReduce

•  Parallel DBMS
–  Indexing
–  Physical tuning
–  Can stream data from one operator to the next without blocking

•  MapReduce
–  Can easily add nodes to the cluster (no need to even restart)
–  Uses less memory since processes one key-group at a time
–  Intra-query fault-tolerance thanks to results on disk
–  Intermediate results on disk also facilitate scheduling
–  Handles adverse conditions: e.g., stragglers
–  Arguably more scalable… but also needs more nodes!

CSE 344 – Winter 2012 28

HW6

•  We will use MapReduce (Hadoop)
•  We will use a declarative language: Pig Latin
•  Cluster will run in Amazon’s cloud

–  Give your credit card
–  Click, click, click… and you have a MapReduce

cluster running all configured for you
•  We will analyze a real 0.5TB graph

CSE 344 – Winter 2012 29

30

Pig Latin Mini-Tutorial

(will discuss only briefly in class;
please read in order to do homework 6)

Pig-Latin Overview
•  Data model = loosely typed nested relations
•  Query model = a sql-like, dataflow language

•  Execution model:
–  Option 1: run locally on your machine; e.g. to debug
–  Option 2: compile into sequence of map/reduce, run on

a cluster supporting Hadoop
–  In HW6 we use only option 2

31

Example

•  Input: a table of urls:
 (url, category, pagerank)

•  Compute the average pagerank of all
sufficiently high pageranks, for each category

•  Return the answers only for categories with
sufficiently many such pages

32

First in SQL…

33

SELECT category, AVG(pagerank)
FROM Page
WHERE pagerank > 0.2
GROUP BY category
HAVING COUNT(*) > 106

Page(url, category, pagerank)

…then in Pig-Latin

34

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

 BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE
 category, AVG(good_urls.pagerank)

Page(url, category, pagerank)

Types in Pig-Latin

•  Atomic: string or number, e.g. ‘Alice’ or 55

•  Tuple: (‘Alice’, 55, ‘salesperson’)

•  Bag: {(‘Alice’, 55, ‘salesperson’),
 (‘Betty’,44, ‘manager’), …}

•  Maps: we will try not to use these

35

Types in Pig-Latin

Tuple components can be referenced by
number

•  $0, $1, $2, …

Bags can be nested ! Non 1st Normal Form
•  {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

36

37

[Olston’2008]

Loading data

•  Input data = FILES !
–  Heard that before ?

•  The LOAD command parses an input file into
a bag of records

•  Both parser (=“deserializer”) and output type
are provided by user

38
For HW6: simply use the code provided

[Olston’2008]

Loading data

39

queries = LOAD ‘query_log.txt’
 USING myLoad()
 AS (userID, queryString, timeStamp)

[Olston’2008]

Loading data

•  USING userfuction() -- is optional
–  Default deserializer expects tab-delimited file

•  AS type – is optional
–  Default is a record with unnamed fields; refer to

them as $0, $1, …
•  The return value of LOAD is just a handle to a

bag
–  The actual reading is done in pull mode, or

parallelized

40

[Olston’2008]

FOREACH

41

expanded_queries =
 FOREACH queries
 GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

[Olston’2008]

FOREACH

42

expanded_queries =
 FOREACH queries
 GENERATE userId,
 flatten(expandQuery(queryString))

Now we get a flat collection

[Olston’2008]

43

[Olston’2008]

FLATTEN

Note that it is NOT a normal function !
(that’s one thing I don’t like about Pig-latin)

•  A normal FLATTEN would do this:
–  FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
–  Its type is: {{T}} à {T}

•  The Pig-latin FLATTEN does this:
–  FLATTEN({4,5,6}) = 4, 5, 6
–  What is its Type? {T} à T, T, T, …, T ?????

44

[Olston’2008]

FILTER

45

real_queries = FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries = FILTER queries
 BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

[Olston’2008]

JOIN

46

join_result = JOIN results BY queryString
 revenue BY queryString

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

[Olston’2008]

47

[Olston’2008]

GROUP BY

48

grouped_revenue = GROUP revenue BY queryString
query_revenues =
 FOREACH grouped_revenue
 GENERATE queryString,
 SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}

[Olston’2008]

Simple Map-Reduce

49

map_result = FOREACH input
 GENERATE FLATTEN(map(*))
key_groups = GROUP map_result BY $0
output = FOREACH key_groups

 GENERATE reduce($1)

input : {(field1, field2, field3,)}

map_result : {(a1, a2, a3, . . .)}
key_groups : {(a1, {(a2, a3, . . .)})}

[Olston’2008]

Co-Group

50

grouped_data =
 COGROUP results BY queryString,
 revenue BY queryString;

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

What is the output type in general ?

[Olston’2008]

Co-Group

51
Is this an inner join, or an outer join ?

[Olston’2008]

Co-Group

52

url_revenues = FOREACH grouped_data
 GENERATE
 FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

[Olston’2008]

Co-Group v.s. Join

53

grouped_data = COGROUP results BY queryString,
 revenue BY queryString;
join_result = FOREACH grouped_data
 GENERATE FLATTEN(results),
 FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

Result is the same as JOIN

[Olston’2008]

Asking for Output: STORE

54

STORE query_revenues INTO `myoutput'
 USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

[Olston’2008]

Implementation

•  Over Hadoop !
•  Parse query:

–  Everything between LOAD and STORE à one
logical plan

•  Logical plan à sequence of Map/Reduce ops
•  All statements between two (CO)GROUPs à

one Map/Reduce op

55

[Olston’2008]

Implementation

56

[Olston’2008]

