Introduction to Data Management CSE 344

Lecture 18: Lossless Decomposition (Supplement needed for Webquiz)

Announcements

- Webquiz due tomorrow! (last one)
- No lecture on Monday (Presidents' day)
- Homework 5 due next Friday

Decompositions in General

$R_{1}=$ projection of R on $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$
$R_{2}=$ projection of R on $A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{p}$

Lossless Join Decomposition

Lossy Join Decomposition

Sometimes it is not:

Decomposition in General

Fact: If $A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}$ then the decomposition is lossless
It follows that every BCNF decomposition is losselss

$$
\text { In general: } R=S_{1} \bowtie \ldots \bowtie S_{n}
$$

Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

$$
\begin{aligned}
& R(A, B, C, D)=S 1(A, D) \bowtie S 2(A, C) \bowtie S 3(B, C, D) \\
& R \text { satisfies: } A \rightarrow B, B \rightarrow C, C D \rightarrow A
\end{aligned}
$$

$S 1=\Pi_{A D}(R), S 2=\Pi_{A C}(R), S 3=\Pi_{B C D}(R)$,
hence $R \subseteq S 1 \bowtie S 2 \bowtie S 3$
Need to check: $R \supseteq S 1 \bowtie S 2 \bowtie S 3$
Suppose (a,b,c,d) $\in S 1 \bowtie S 2 \bowtie S 3$ Is it also in R ?
R must contain the following tuples:
"Chase" them (apply FDs):

A	B	C	D	Why?$\begin{aligned} & (\mathrm{a}, \mathrm{~d}) \in \mathrm{S} 1=\Pi_{\mathrm{AD}}(\mathrm{R}) \\ & (\mathrm{a}, \mathrm{c}) \in \mathrm{S} 2=\Pi_{\mathrm{BD}}(\mathrm{R}) \\ & (\mathrm{b}, \mathrm{c}, \mathrm{~d}) \in \mathrm{S} 3=\Pi_{\mathrm{BCD}}(\mathrm{R}) \end{aligned}$
a	b1	c1	d	
a	b2	C	d2	
a3	b	C	d	

A	B	C	\mathbf{D}
a	b1	c1	d
a	b1	c	$d 2$
a3	b	c	d

A	B	C	D
a	b1	c	d
a	b1	c	d2
a3	b	c	d

A	B	C	D
a	b1	C	d
a	b1	c	d2
a	b	c	d

Hence R
contains (a,b,c,d)

