
Introduction to Data Management
CSE 344

Lecture 17: Views

CSE 344 – Winter 2012 1

What is a View?

A view is a relation defined by a query

CSE 344 – Winter 2012

 CREATE VIEW StorePrice AS
 SELECT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.pid = y.pid

This is like a new table
StorePrice(store,price)

2

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

How to Use a View?

•  A "high end" store is a store that sold some product
over 1000. For each customer, find all the high end
stores that they visit. Return a set of (customer-
name, high-end-store) pairs.

CSE 344 – Winter 2012

SELECT DISTINCT z.name, u.store
FROM Customer z, Purchase u, StorePrice v
WHERE z.cid = u.cid
AND u.store = v.store
AND v.price > 1000

3

StorePrice(store, price) Customer(cid, name, city)
Purchase(customer, product, store)
Product(pname, price)

Types of Views

•  Virtual views
–  Used in databases
–  Computed only on-demand – slow at runtime
–  Always up to date

•  Materialized views
–  Used in data warehouses
–  Pre-computed offline – fast at runtime
–  May have stale data
–  Indexes are materialized views

CSE 344 – Winter 2012 4

Query Modification

SELECT DISTINCT z.name, u.store
FROM Customer z, Purchase u, StorePrice v
WHERE z.cid = u.cid
AND u.store = v.store
AND v.price > 1000

CREATE VIEW StorePrice AS
 SELECT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.pid = y.pid

View:

Query:

CSE 344 – Winter 2012 5

StorePrice(store, price) Customer(cid, name, city)
Purchase(customer, product, store)
Product(pname, price)

For each customer, find all the
high end stores that they visit.

Query Modification

SELECT DISTINCT z.name, u.store
FROM Customer z, Purchase u,
 (SELECT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.pid = y.pid) v
WHERE z.cid = u.cid
AND u.store = v.store
AND v.price > 1000

Modified query:

CSE 344 – Winter 2012 6

StorePrice(store, price) Customer(cid, name, city)
Purchase(customer, product, store)
Product(pname, price)

For each customer, find all the
high end stores that they visit.

Query Modification

SELECT DISTINCT z.name, u.store
FROM Customer z, Purchase u,
 Purchase x, Product y
WHERE z.cid = u.cid
AND u.store = x.store
AND y.price > 1000
AND x.pid = y.pid

Modified and unnested query:

CSE 344 – Winter 2012 7

StorePrice(store, price) Customer(cid, name, city)
Purchase(customer, product, store)
Product(pname, price)

Note that Purchase occurs twice.
It has to be that way (why?).

For each customer, find all the
high end stores that they visit.

Further Virtual Views Optimizations

CSE 344 – Winter 2012 8

CREATE VIEW AcmePurchase AS
 SELECT x.cid, x.name as cname, x.city, z.pid, z.name as pname, z.price
 FROM Customer x, Purchase y, Product z
 WHERE x.cid = y.cid and y.store = 'ACME' and y.pid = z.pid

SELECT max(u.price)
FROM AcmePurchase u

SELECT max(z.price)
FROM Customer x, Purchase y, Product z
WHERE x.cid = y.cid and y.store = 'ACME' and y.pid = z.pid

View

Query

First rewrite. Can we
further optimize?

Customer(cid, name, city)
Purchase(customer, product, store)
Product(pname, price)

AcmePurchase(cid, name, …, price)

Find the highest prices
at all ACME stores

Further Virtual Views Optimizations

CSE 344 – Winter 2012 9

CREATE VIEW AcmePurchase AS
 SELECT x.cid, x.name as cname, x.city, z.pid, z.name as pname, z.price
 FROM Customer x, Purchase y, Product z
 WHERE x.cid = y.cid and y.store = 'ACME' and y.pid = z.pid

SELECT max(u.price)
FROM AcmePurchase u

SELECT max(z.price)
FROM Customer x, Purchase y, Product z
WHERE x.cid = y.cid and y.store = 'ACME' and y.pid = z.pid

View

Query

Correct if Purcase.customer
is Not NULL and Foreign Key

Customer(cid, name, city)
Purchase(customer, product, store)
Product(pname, price)

AcmePurchase(cid, name, …, price)

Find the highest prices
at all ACME stores

Applications of Virtual Views

•  Increased physical data independence. E.g.
–  Vertical data partitioning
–  Horizontal data partitioning

•  Logical data independence. E.g.
–  Change schemas of base relations (i.e., stored tables)

•  Security
–  View reveals only what the users are allowed to know

CSE 344 – Winter 2012 10

Vertical Partitioning
SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
234234 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
 . . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

T1.SSN is a key and a foreign key to T2.SSN and a foreign key to T3.SSN

Vertical Partitioning

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn and T1.ssn=T3.ssn

CSE 344 – Winter 2012 12

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

Vertical Partitioning
SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will be queried by the system ?

When do we use vertical partitioning ?

SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = ‘Sue’
 and T1.SSN=T2.SSN and T1.SSN = T3.SSN

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

Vertical Partitioning Applications

1.  Advantages
–  Speeds up queries that touch only a small fraction of

columns
–  Single column can be compressed very effectively, reducing

disk I/O

2.  Disadvantages
–  Updates are very expensive!
–  Need many joins to access many columns
–  Repeated key columns add overhead

14 Hot trend today for data analytics: startups C-Store and Vertica

Horizontal Partitioning

SSN Name City
234234 Mary Huston
345345 Sue Seattle
345343 Joan Seattle
234234 Ann Portland
-- Frank Calgary
-- Jean Montreal

Customers

SSN Name City
234234 Mary Huston

CustomersInHuston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

.

Horizontal Partitioning

CREATE VIEW Customers AS
 CustomersInHouston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

CSE 344 – Winter 2012 16

CustomersInHuston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

CSE 344 – Winter 2012 17

CustomersInHuston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

CSE 344 – Winter 2012 18

All tables!
The systems doesn’t know that CustomersInSeattle.city = ‘Seattle’

CustomersInHuston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning
Better: remove CustomerInHuston.city etc

CSE 344 – Winter 2012 19

CREATE VIEW Customers AS
 (SELECT SSN, name, ‘Huston’ as city
 FROM CustomersInHuston)
 UNION ALL
 (SELECT SSN, name, ‘Seattle’ as city
 FROM CustomersInSeattle)
 UNION ALL
 . . .

CustomersInHuston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersInSeattle

CSE 344 – Winter 2012 20

CustomersInHuston(ssn,name)
CustomersInSeattle(ssn,name)
.

Customers(ssn,name,city)

Horizontal Partitioning Applications

•  Performance optimization
–  Especially for data warehousing
–  E.g. one partition per month
–  E.g. archived applications and active applications

•  Distributed and parallel databases

•  Data integration

CSE 344 – Winter 2012 21

CSE 344 – Winter 2012

Levels of Abstraction

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

schema seen
by apps

22

Logical Data
Independence

Physical Data
Independence

