
1

CSE344: Lecture 10
Relational Query Languages

Relational Algebra, Datalog,
Relational Calculus

Dan Suciu -- CSE344 Winter 2012

Announcements

•  Makeup lecture:
– Tue, Jan 31st 2012, 3:30-4:20, MOR 220
– Optional: we will practice datalog, RA, RC

•  Homework 3 due Wednesday
•  Midterm next Monday

•  For today’s lecture: read accompanying
paper (see the Calendar page)

2

Relational Query Languages

1.  Relational Algebra

2.  Recursion-free datalog with negation

3.  Relational Calculus

Dan Suciu -- CSE344 Winter 2012 3

Running Example

Dan Suciu -- CSE344 Winter 2012 4

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Find all actors who acted both in 1910 and in 1940:

Two Perspectives

•  Named Perspective:
 Actor(id, fname, lname)
 Casts(pid,mid)
 Movie(id,name,year)

•  Unnamed Perspective:
 Actor = arity 3
 Casts = arity 2
 Movie = arity 3

Dan Suciu -- CSE344 Winter 2012 5

1. Relational Algebra

•  Used internally by the database engine
to execute queries

Dan Suciu -- CSE344 Winter 2012 6

1. Relational Algebra
The Basic Five operators:
•  Union: ∪
•  Difference: -
•  Selection: σ
•  Projection: Π
•  Join: ⨝

Renaming: ρ (for named perspective)

1. Relational Algebra (Details)
•  Selection: returns tuples that satisfy condition

–  Named perspective: σyear = ‘1910’(Movie)
–  Unnamed perspective: σ3 = ‘1910’ (Movie)

•  Projection: returns only some attributes
–  Named perspective: Π fname,lname(Actor)
–  Unnamed perspective: Π 2,3(Actor)

•  Join: joins two tables on a condition
–  Named perspective: Casts ⨝ mid=id Movie
–  Unnamed perspectivie: Casts ⨝ 2=1 Movie

1. Relational Algebra Example
Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

⨝ mid=id

σyear1=‘1910’ and year2=‘1940’

⨝ id=pid

⨝ mid=id

Casts Movie Casts Movie Actor

⨝ id=pid

Πfname,lname

ρ year2=year ρ year1=year

Note how we
renamed year
to year1, year2

Named perspective

Actor(id, fname, lname)
Casts(pid,mid)
Movie(id,name,year)

1. Relational Algebra Example

⨝ 2=1

σ8 =‘1910’ and 13=‘1940’

⨝ 1=1

⨝ 2=1

Casts Movie Casts Movie Actor

⨝ 1=1

Π2,3

Actor(id, fname, lname)
Casts(pid,mid)
Movie(id,name,year)

Unnamed perspective

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

2. Datalog

•  Very friendly notation for queries
•  Initially designed for recursive queries
•  Some companies offer datalog

implementation for data anlytics, e.g.
LogicBlox

•  We discuss only recursion-free or non-
recursive datalog, and add negation

Dan Suciu -- CSE344 Winter 2012 11

2. Datalog

How to try out datalog quickly:
•  Download DLV from

http://www.dbai.tuwien.ac.at/proj/dlv/
•  Run DLV on this file: parent(william, john).

parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Find Movies made in 1940

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

2. Datalog: Terminology

Dan Suciu -- CSE344 Winter 2012 17

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

body head

atom atom atom

f, l = head variables
x,y,z = existential variables

2. Datalog program

Dan Suciu -- CSE344 Winter 2012 18

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
 Q4(x) :- B1(x)
 Q4(x) :- B2(x)

Find all actors with Bacon number ≤ 2

Note: Q4 is the union of B1 and B2

2. Datalog with negation

Dan Suciu -- CSE344 Winter 2012 19

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 Q6(x) :- Actor(x,f,l), not B1(x), not B0(x)

Find all actors with Bacon number ≥ 2

2. Safe Datalog Rules

Dan Suciu -- CSE344 Winter 2012 20

U1(x,y) :- Movie(x,z,1994), y>1910

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears
in some positive relational atom

2. Datalog v.s. SQL

•  Non-recursive datalog with negation is
very close to SQL; with some practice,
you should be able to translate between
them back and forth without difficulty

Dan Suciu -- CSE344 Winter 2012 21

3. Relational Calculus

•  Also known as predicate calculus, or first
order logic

•  The most expressive formalism for queries:
easy to write complex queries

•  TRC = Tuple RC = named perspective
•  DRC = Domain RC = unnamed perspective

Dan Suciu -- CSE344 Winter 2012 22

3. Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Predicate P:

Q(x1, …, xk) = P

Query Q:

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940)))

What does this query return ?

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

27

3. Relational Calculus:
Example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Dan Suciu -- p544 Fall 2011

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

3. Domain Independent
Relational Calculus

•  As in datalog, one can write “unsafe”
RC queries; they are also called domain
dependent

•  Lesson: make sure your RC queries are
domain independent

Dan Suciu -- CSE344 Winter 2012 28

3. Relational Calculus

How to write a complex SQL query:
•  Write it in RC
•  Translate RC to datalog (see next)
•  Translate datalog to SQL

Take shortcuts when you know what
you’re doing

Dan Suciu -- CSE344 Winter 2012 29

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

3. From RC to Non-recursive
Datalog w/ negation

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

Step 2: Make all subqueries domain independent

Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

3. From RC to Non-recursive
Datalog w/ negation

Step 3: Create a datalog rule for each subexpression;
 (shortcut: only for “important” subexpressions)

Q(x) = ∃y. Likes(x, y) ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

3. From RC to Non-recursive
Datalog w/ negation

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE L2.drinker=L.drinker and L2.beer=L.beer
 and L2.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L2.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

3. From RC to Non-recursive
Datalog w/ negation

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Serves S
 WHERE L.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y) Unsafe rule

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Summary of Translation

•  RC à recursion-free datalog w/ negation
– Subtle: as we saw; more details in the paper

•  Recursion-free datalog w/ negation à RA
•  RA à RC

Theorem: RA, non-recursive datalog w/ negation,
and RC, express exactly the same sets of queries:

RELATIONAL QUERIES

