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CSE344: Lecture 10 
Relational Query Languages 

Relational Algebra, Datalog, 
Relational Calculus 

Dan Suciu -- CSE344 Winter 2012 



Announcements 

•  Makeup lecture: 
– Tue, Jan 31st 2012, 3:30-4:20, MOR 220 
– Optional: we will practice datalog, RA, RC 

•  Homework 3 due Wednesday 
•  Midterm next Monday 

•  For today’s lecture: read accompanying 
paper (see the Calendar page) 
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Relational Query Languages 

1.  Relational Algebra 

2.  Recursion-free datalog with negation 

3.  Relational Calculus 
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Running Example 
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Q: SELECT DISTINCT a.fname, a.lname 
     FROM   Actor a, Casts c1, Movie m1, Casts c2, Movie m2 
     WHERE  a.id = c1.pid  AND c1.mid = m1.id 
           AND  a.id = c2.pid  AND c2.mid = m2.id 
           AND  m1.year = 1910 AND m2.year = 1940; 

Find all actors who acted both in 1910 and in 1940: 



Two Perspectives 

•  Named Perspective: 
 Actor(id, fname, lname) 
 Casts(pid,mid) 
 Movie(id,name,year) 

•  Unnamed Perspective: 
 Actor = arity 3 
 Casts = arity 2 
 Movie = arity 3 
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1. Relational Algebra 

•  Used internally by the database engine 
to execute queries 
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1. Relational Algebra 
The Basic Five operators: 
•  Union: ∪ 
•  Difference: - 
•  Selection: σ 
•  Projection: Π  
•  Join: ⨝ 

Renaming: ρ (for named perspective) 



1. Relational Algebra (Details) 
•  Selection: returns tuples that satisfy condition 

–  Named perspective:   σyear = ‘1910’(Movie) 
–  Unnamed perspective:  σ3 = ‘1910’ (Movie) 

•  Projection: returns only some attributes 
–  Named perspective:   Π fname,lname(Actor) 
–  Unnamed perspective:  Π 2,3(Actor) 

•  Join: joins two tables on a condition 
–  Named perspective:   Casts ⨝ mid=id Movie 
–  Unnamed perspectivie:  Casts ⨝ 2=1 Movie 



1. Relational Algebra Example 
Q: SELECT DISTINCT a.fname, a.lname 
     FROM   Actor a, Casts c1, Movie m1, Casts c2, Movie m2 
     WHERE  a.id = c1.pid  AND c1.mid = m1.id 
           AND  a.id = c2.pid  AND c2.mid = m2.id 
           AND  m1.year = 1910  AND m2.year = 1940; 

⨝ mid=id  

σyear1=‘1910’ and year2=‘1940’  

⨝ id=pid  

⨝ mid=id  

Casts Movie Casts Movie Actor 

⨝ id=pid  

Πfname,lname 

ρ year2=year ρ year1=year 

Note how we 
renamed year 
to year1, year2 

Named perspective 

Actor(id, fname, lname) 
Casts(pid,mid) 
Movie(id,name,year) 



1. Relational Algebra Example 

⨝ 2=1 

σ8 =‘1910’ and 13=‘1940’  

⨝ 1=1  

⨝ 2=1  

Casts Movie Casts Movie Actor 

⨝ 1=1 

Π2,3 

Actor(id, fname, lname) 
Casts(pid,mid) 
Movie(id,name,year) 

Unnamed perspective 

Q: SELECT DISTINCT a.fname, a.lname 
     FROM   Actor a, Casts c1, Movie m1, Casts c2, Movie m2 
     WHERE  a.id = c1.pid  AND c1.mid = m1.id 
           AND  a.id = c2.pid  AND c2.mid = m2.id 
           AND  m1.year = 1910  AND m2.year = 1940; 



2. Datalog 

•  Very friendly notation for queries 
•  Initially designed for recursive queries 
•  Some companies offer datalog 

implementation for data anlytics, e.g. 
LogicBlox  

•  We discuss only recursion-free or non-
recursive datalog, and add negation 
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2. Datalog 

How to try out datalog quickly: 
•  Download DLV from 

http://www.dbai.tuwien.ac.at/proj/dlv/ 
•  Run DLV on this file: parent(william, john). 

parent(john, james). 
parent(james, bill). 
parent(sue, bill). 
parent(james, carol). 
parent(sue, carol). 
 
male(john). 
male(james). 
female(sue). 
male(bill). 
female(carol). 
 
grandparent(X, Y) :- parent(X, Z), parent(Z, Y). 
father(X, Y) :- parent(X, Y), male(X). 
mother(X, Y) :- parent(X, Y), female(X). 
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y. 
sister(X, Y)  :- parent(P, X), parent(P, Y), female(X), X != Y. 



2. Datalog: Facts and Rules 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts = tuples in the database Rules = queries 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Find Movies made in 1940 



2. Datalog: Facts and Rules 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts = tuples in the database Rules = queries 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Q2(f, l) :-  Actor(z,f,l), Casts(z,x),  
                 Movie(x,y,’1940’). 

Find Actors who acted in Movies made in 1940 



2. Datalog: Facts and Rules 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts = tuples in the database Rules = queries 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Q2(f, l) :-  Actor(z,f,l), Casts(z,x),  
                 Movie(x,y,’1940’). 

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), 
                                 Casts(z,x2), Movie(x2,y2,1940) 

Find Actors who acted in a Movie in 1940 and in one in 1910 



2. Datalog: Facts and Rules 

Actor(344759,‘Douglas’, ‘Fowley’). 
Casts(344759, 29851). 
Casts(355713, 29000). 
Movie(7909, ‘A Night in Armour’, 1910). 
Movie(29000, ‘Arizona’, 1940). 
Movie(29445, ‘Ave Maria’, 1940). 

Facts = tuples in the database Rules = queries 

Q1(y) :-  Movie(x,y,z), z=‘1940’. 

Q2(f, l) :-  Actor(z,f,l), Casts(z,x),  
                 Movie(x,y,’1940’). 

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), 
                                 Casts(z,x2), Movie(x2,y2,1940) 

Extensional Database Predicates = EDB = Actor, Casts, Movie 
Intensional Database Predicates = IDB = Q1, Q2, Q3 



2. Datalog: Terminology 
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Q2(f, l) :-  Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’). 

body head 

atom atom atom 

f, l  = head variables 
x,y,z  = existential variables 



2. Datalog program 

Dan Suciu -- CSE344 Winter 2012 18 

 B0(x) :- Actor(x,'Kevin', 'Bacon') 
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y) 
 B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y) 
 Q4(x) :- B1(x) 
 Q4(x) :- B2(x) 

Find all actors with Bacon number ≤ 2 

Note: Q4 is the union of B1 and B2 



2. Datalog with negation 
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 B0(x) :- Actor(x,'Kevin', 'Bacon') 
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y) 
 Q6(x) :- Actor(x,f,l), not B1(x), not B0(x) 

Find all actors with Bacon number ≥ 2 



2. Safe Datalog Rules 
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U1(x,y) :- Movie(x,z,1994), y>1910 

Here are unsafe datalog rules.  What’s “unsafe” about them ? 

U2(x)   :- Movie(x,z,1994), not Casts(u,x) 

A datalog rule is safe if every variable appears 
in some positive relational atom 



2. Datalog v.s. SQL 

•  Non-recursive datalog with negation is 
very close to SQL; with some practice, 
you should be able to translate between 
them back and forth without difficulty 
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3. Relational Calculus 

•  Also known as predicate calculus, or first 
order logic 

•  The most expressive formalism for queries: 
easy to write complex queries 

•  TRC = Tuple RC    = named perspective 
•  DRC = Domain RC = unnamed perspective 
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3. Relational Calculus 

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P  |  ∃x.P 

Predicate P: 

Q(x1, …, xk) = P 

Query Q: 

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940)) 

Example: find the first/last names of actors who acted in 1940 

Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940))) 

What does this query return ? 



3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 



3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 



3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Find drinkers that frequent some bar that serves only beers they like. 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z)) 
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3. Relational Calculus: 
Example 

Find drinkers that frequent some bar that serves some beer they like. 

Find drinkers that frequent only bars that serves some beer they like. 

Find drinkers that frequent only bars that serves only beer they like. 

Find drinkers that frequent some bar that serves only beers they like. 

Dan Suciu -- p544 Fall 2011 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z) 

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z)) 

Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z)) 

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z)) 



3. Domain Independent 
Relational Calculus 

•  As in datalog, one can write “unsafe” 
RC queries; they are also called domain 
dependent 

•  Lesson: make sure your RC queries are 
domain independent 
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3. Relational Calculus 

How to write a complex SQL query: 
•  Write it in RC 
•  Translate RC to datalog (see next) 
•  Translate datalog to SQL 
 
Take shortcuts when you know what 
you’re doing 
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3. From RC to Non-recursive 
Datalog w/ negation 

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z)) 

Query: Find drinkers that like some beer so much that  
  they frequent all bars that serve it 



3. From RC to Non-recursive 
Datalog w/ negation 

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z)) 

Query: Find drinkers that like some beer so much that  
  they frequent all bars that serve it 

Step 1: Replace ∀ with ∃ using de Morgan’s Laws 

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z)) 



3. From RC to Non-recursive 
Datalog w/ negation 

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z)) 

Query: Find drinkers that like some beer so much that  
  they frequent all bars that serve it 

Step 1: Replace ∀ with ∃ using de Morgan’s Laws 

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z)) 

Step 2: Make all subqueries domain independent 

Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z)) 



3. From RC to Non-recursive 
Datalog w/ negation 

Step 3: Create a datalog rule for each subexpression; 
              (shortcut: only for “important” subexpressions) 

Q(x) = ∃y. Likes(x, y) ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z)) 

H(x,y)  :- Likes(x,y),Serves(y,z), not Frequents(x,z) 
Q(x)  :- Likes(x,y), not H(x,y) 

H(x,y) 



3. From RC to Non-recursive 
Datalog w/ negation 

Step 4: Write it in SQL 

SELECT DISTINCT L.drinker FROM Likes L 
WHERE not exists 
   (SELECT * FROM Likes L2, Serves S 
    WHERE L2.drinker=L.drinker and L2.beer=L.beer 
            and L2.beer=S.beer 
            and not exists (SELECT * FROM Frequents F 
                                     WHERE F.drinker=L2.drinker 
                                          and F.bar=S.bar)) 

H(x,y)  :- Likes(x,y),Serves(y,z), not Frequents(x,z) 
Q(x)  :- Likes(x,y), not H(x,y) 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 



3. From RC to Non-recursive 
Datalog w/ negation 

Improve the SQL query by using an unsafe datalog rule 

SELECT DISTINCT L.drinker FROM Likes L 
WHERE not exists 
   (SELECT * FROM Serves S 
    WHERE L.beer=S.beer 
            and not exists (SELECT * FROM Frequents F 
                                     WHERE F.drinker=L.drinker 
                                             and F.bar=S.bar)) 

H(x,y)  :- Likes(x,y),Serves(y,z), not Frequents(x,z) 
Q(x)  :- Likes(x,y), not H(x,y) Unsafe rule 

Likes(drinker, beer) 
Frequents(drinker, bar) 
Serves(bar, beer) 



Summary of Translation 

•  RC à recursion-free datalog w/ negation 
– Subtle: as we saw; more details in the paper 

•  Recursion-free datalog w/ negation à RA 
•  RA à RC 

Theorem: RA, non-recursive datalog w/ negation,  
and RC, express exactly the same sets of queries: 

RELATIONAL QUERIES 


