Introduction to Data Management CSE 344

Lecture 8-9: Relational Algebra and Query Evaluation

Dan Suciu - CSE 344, Winter 2012

Announcements

- Webquiz due tomorrow
- Makeup lecture (not mandatory): Tuesday, Jan 31st, 3:30 – 4:30, Room TBA
- Homework 3 due on Wednesday
 - IISQLSRV
 - SQL Azure
- Midterm:

Monday, Feb 6th, 9:30-10:20, in class

Where We Are

- Motivation for using a DBMS for managing data
- SQL, SQL, SQL
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)
 - Tuning queries (CREATE INDEX)
- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

Dan Suciu - CSE 344, Winter 2012

Data Management with SQLite

- So far, we have been managing data with SQLite as follows:
 - One data file
 - One user
 - One DBMS application
- But only a limited number of scenarios work with such model

Client-Server Architecture

- One server running the database
- Many clients, connecting via the JDBC (Java Database Connectivity Protocol)

Client-Server Architecture

- One *server* that stores the database (called DBMS or RDBMS):
 - Your own desktop, or
 - Some beefy system (IISQLSRV1), or
 - A cloud service (SQL Azure)
- Many *clients* run apps and connect to DBMS
 - Microsoft's Management Studio (for SQL Server), or
 - psql (for postgres)
 - Some Java program or some C++ program
- Clients "talk" to server using JDBC protocol

Using a DBMS Server

- 1. Client application establishes connection to server
- 2. Client must authenticate self
- 3. Client submits SQL commands to server
- 4. Server executes commands and returns results

Question: How does Query Evaluation Work?

The WHAT and the HOW

- In SQL we write WHAT we want to get form the data
- The database system needs to figure out HOW to get the data we want
- The passage from WHAT to HOW goes through the Relational Algebra

Physical Data Independence

Overview: SQL = WHAT

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it

Overview: Relational Algebra = HOW

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b}, . . .

Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

Relational Algebra Operators

- Union ∪, intersection ∩, difference -
- Selection σ
- Projection
- Join 🖂
- Rename p
- Duplicate elimination δ
- Grouping and aggregation $\boldsymbol{\gamma}$
- Sorting τ

Extended RA

RA

Union and Difference

What do they mean over bags?

Dan Suciu - CSE 344, Winter 2012

What about Intersection ?

• Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

• Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

Selection

• Returns all tuples which satisfy a condition

Employee

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

$\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

Projection

Eliminates columns

- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee	SSN	Name	Salary
	1234545	John	20000
	5423341	John	60000
	4352342	John	20000

$\Pi_{Name,Salary}$ (Employee)

Name	Salary	Name	Salary
John	20000	John	20000
John	60000	John	60000
John	20000		

Bag semantics

Set semantics

Which is more efficient?

Cartesian Product

• Each tuple in R1 with each tuple in R2

Very rare in practice; mainly used to express joins

Employee

Dependent

Name	SSN
John	999999999
Tony	77777777

EmpSSN	DepName
999999999	Emily
777777777	Joe

Employee × **Dependent**

Name	SSN	EmpSSN	DepName
John	999999999	999999999	Emily
John	999999999	77777777	Joe
Tony	77777777	999999999	Emily
Tony	77777777	777777777	Joe

Renaming

• Changes the schema, not the instance

- Example:
 - $ρ_{N, S}$ (Employee) → Answer(N, S)

Not really used by systems, but needed on paper

Natural Join

R1 ⋈ R2

- Meaning: $R1 \bowtie R2 = \Pi_A(\sigma(R1 \times R2))$
- Where:
 - The selection σ checks equality of all common attributes
 - The projection eliminates the duplicate common attributes

Natural Join

S

R

Α	В
Х	Y
Х	Z
Y	Z
Z	V

 B
 C

 Z
 U

 V
 W

 Z
 V

	А	В	С
R ⋈ S =	Х	Z	U
$\Pi_{ABC}(\sigma_{R.B=S.B}(R\timesS))$	Х	Z	V
	Y	Z	U
	Y	Z	V
	Z	V	W

Dan Suciu - CSE 344, Winter 2012

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?
- Given R(A, B, C), S(D, E), what is $R \bowtie S$?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

Theta Join

• A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

• Here θ can be any condition

Eq-join

• A theta join where θ is an equality

$$R1 \bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$$

• This is by far the most used variant of join in practice

So Which Join Is It?

 When we write R ⋈ S we usually mean an eqjoin, but we often omit the equality predicate when it is clear from the context

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier
33	98120	lung	null

 $\mathsf{P} \ltimes \mathsf{V}$

From SQL to RA

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

> SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

From SQL to RA

An Equivalent Expression

Extended RA: Operators on Bags

- Duplicate elimination $\boldsymbol{\delta}$
- Grouping γ
- Sorting τ

Logical Query Plan

Dan Suciu - CSE 344, Winter 2012

Dan Suciu - CSE 344, Winter 2012

How about Subqueries?

```
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)
```

How about Subqueries?

How about Subqueries?

SELECT Q.sno FROM Supplier Q WHERE Q.sstate = 'WA' and not exists (SELECT * FROM Supply P WHERE P.sno = Q.sno and P.price > 100)

41

How about Subqueries?

How about Subqueries?

Dan Suciu - CSE 344, Winter 2012