
Introduction to Data Management
CSE 344

Lecture 7: Nested Queries in SQL

1 Dan Suciu - CSE 344, Winter 2012

Lecture Goals

•  Today we will learn how to write more
powerful SQL queries

•  They are needed in Homework 3

•  Reminder: Book chapters associated with
lectures are listed on the calendar page of the
course website

Dan Suciu - CSE 344, Winter 2012 2

Subqueries

•  A subquery is a SQL query nested inside a larger query
•  Such inner-outer queries are called nested queries
•  A subquery may occur in:

–  A SELECT clause
–  A FROM clause
–  A WHERE clause

•  Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

Dan Suciu - CSE 344, Winter 2012 3

4

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
 FROM Company Y
 WHERE Y.cid=X.cid) as City
FROM Product X

What happens if the subquery returns more than one city ?

Dan Suciu - CSE 344, Winter 2012

We get a runtime error
(SQLite simply ignores the extra values)

“correlated
subquery”

1. Subqueries in SELECT

Whenever possible, don’t use a nested queries:

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

= We have
“unnested”
the query

Product (pname, price, cid)
Company(cid, cname, city)

SELECT X.pname, (SELECT Y.city
 FROM Company Y
 WHERE Y.cid=X.cid) as City
FROM Product X

6

1. Subqueries in SELECT

Compute the number of products made by each company
SELECT DISTINCT C.cname, (SELECT count(*)
 FROM Product P
 WHERE P.cid=C.cid)
FROM Company C

Better: we can
unnest by using
a GROUP BY

Dan Suciu - CSE 344, Winter 2012

Product (pname, price, cid)
Company(cid, cname, city)

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

7

1. Subqueries in SELECT
Are these really equivalent?
SELECT DISTINCT C.cname, (SELECT count(*)
 FROM Product P
 WHERE P.cid=C.cid)
FROM Company C

No! Different results if a
company has no products

Dan Suciu - CSE 344, Winter 2012

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid
GROUP BY C.cname

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P
ON C.cid=P.cid
GROUP BY C.cname

8

2. Subqueries in FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT * FROM Product AS Y WHERE price > 20) as X
WHERE X.price < 500

Unnest this query !

Dan Suciu - CSE 344, Winter 2012

Product (pname, price, cid)
Company(cid, cname, city)

2. Subqueries in FROM

•  At the end of the lecture we will see that
sometimes we really need a subquery and
one option will be to put it in the FROM
clause (see “finding witnesses”).

Dan Suciu - CSE 344, Winter 2012 9

10

3. Subqueries in WHERE

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
 FROM Product P
 WHERE C.cid = P.cid and P.price < 200)

Existential quantifiers

Using EXISTS:

Dan Suciu - CSE 344, Winter 2012

Product (pname, price, cid)
Company(cid, cname, city)

11

3. Subqueries in WHERE

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price < 200)

Existential quantifiers

Using IN

Dan Suciu - CSE 344, Winter 2012

Product (pname, price, cid)
Company(cid, cname, city)

12

3. Subqueries in WHERE

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ANY (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Existential quantifiers

Using ANY:

Dan Suciu - CSE 344, Winter 2012

Product (pname, price, cid)
Company(cid, cname, city)

13

3. Subqueries in WHERE

Find all companies that make some products with price < 200

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy ! J

Existential quantifiers

Now let’s unnest it:

Product (pname, price, cid)
Company(cid, cname, city)

14

3. Subqueries in WHERE

Find all companies whose products all have price < 200

Universal quantifiers are hard ! L

Find all companies that make only products with price < 200

same as:

Universal quantifiers

Dan Suciu - CSE 344, Winter 2012

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries in WHERE

2. Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product ≥ 200

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
 FROM Product P
 WHERE P.price >= 200)

16

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
 FROM Product P
 WHERE P.cid = C.cid and P.price >= 200)

Universal quantifiers

Using EXISTS:

Dan Suciu - CSE 344, Winter 2012

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

17

3. Subqueries in WHERE

SELECT DISTINCT C.cname
FROM Company C
WHERE 200 > ALL (SELECT price
 FROM Product P
 WHERE P.cid = C.cid)

Using ALL:

Dan Suciu - CSE 344, Winter 2012

Universal quantifiers

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

18

Question for Database Fans
and their Friends

•  Can we unnest the universal quantifier query ?

Dan Suciu - CSE 344, Winter 2012

Monotone Queries
•  A query Q is monotone if:

–  Whenever we add tuples to one or more of the tables…
–  … the answer to the query cannot contain fewer tuples

•  Fact: all unnested queries are monotone
–  Proof: using the “nested for loops” semantics

•  Fact: Query with universal quantifier is not monotone

•  Consequence: we cannot unnest a query with a
universal quantifier

Dan Suciu - CSE 344, Winter 2012 19

20

Queries that must be nested

•  Queries with universal quantifiers or with
negation

•  The drinkers-bars-beers example next
•  This is a famous example from textbook on

databases by Ullman

Dan Suciu - CSE 344, Winter 2012

21

The drinkers-bars-beers example
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

x: ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

x: ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

x: ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Challenge: write these in SQL

Find drinkers that frequent some bar that serves only beers they like.

x: ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

GROUP BY v.s. Nested Queries

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
 FROM Purchase y
 WHERE x.product = y.product
 AND price > 1)
 AS TotalSales
FROM Purchase x
WHERE price > 1

Why twice ?

Unnesting Aggregates
Product (pname, price, cid)
Company(cid, cname, city)
Find the number of companies in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Company Y
 WHERE X.city = Y.city)
FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY city

Equivalent queries

Note: no need for DISTINCT
(DISTINCT is the same as GROUP BY)

Dan Suciu - CSE 344, Winter 2012
23

Unnesting Aggregates

Find the number of products made in each city
SELECT DISTINCT X.city, (SELECT count(*)
 FROM Product Y, Company Z
 WHERE Z.cid=Y.cid

 AND Z.city = X.city)
FROM Company X

SELECT X.city, count(*)
FROM Company X, Product Y
WHERE X.cid=Y.cid
GROUP BY X.city

They are NOT
equivalent !

(WHY?)

Product (pname, price, cid)
Company(cid, cname, city)

What if there
are no products

for a city?

More Unnesting

•  Find authors who wrote ≥ 10 documents:
•  Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)
 FROM Wrote
 WHERE Author.login=Wrote.login)
 > 10

This is
SQL by
a novice

Author(login,name)
Wrote(login,url)

Dan Suciu - CSE 344, Winter 2012 25

More Unnesting

•  Find all authors who wrote at least 10 documents:
•  Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by

an expert

Dan Suciu - CSE 344, Winter 2012 26

Finding Witnesses

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the most expensive product made in that city

Dan Suciu - CSE 344, Winter 2012 27

Finding Witnesses

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price
Dan Suciu - CSE 344, Winter 2012 28

Product (pname, price, cid)
Company(cid, cname, city)

For each city, find the most expensive product made in that city

Finding Witnesses
To find the witnesses, compute the maximum price
in a subquery

Dan Suciu - CSE 344, Winter 2012 29

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,
 (SELECT x.city, max(y.price) as maxprice
 FROM Company x, Product y
 WHERE x.cid = y.cid
 GROUP BY x.city) w
WHERE u.cid = v.cid
 and u.city = w.city
 and v.price=w.maxprice;

Finding Witnesses

There is a more concise solution here:

Dan Suciu - CSE 344, Winter 2012 30

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price);

Finding Witnesses

And another one:

Dan Suciu - CSE 344, Winter 2012 31

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid
 and v.price >= ALL (SELECT y.price
 FROM Company x, Product y
 WHERE u.city=x.city
 and x.cid=y.cid);

