Introduction to Data Management CSE 344

Lecture 1: Introduction

Dan Suciu - CSE 344, Winter 2012

- The world is drowning in data!
- Need computer scientists to help manage this data
 - Help domain scientists achieve new discoveries
 - Help companies provide better services (e.g. Facebook)
 - Help governments become more efficient
- This class: introduction to data management
 - Learn about existing tools and how to use them
 - Learn data management principles
- CSE 444: how to build data management systems

Dan Suciu - CSE 344, Winter 2012

Staff

- Instructor: Dan Suciu
 - suciu@cs.washington.edu
 - Office hours: Mon10:30am-11:20pm in CSE 662
- TA: Paris Koutris
 - pkoutris@cs.washington.edu; OH: Tue. 10:30-11:30
- TA: Jerry Li
 - jerryzli@u.washington.edu; OH: Tue. 11:30-12:30
- TA: Matt Moyers
 - <u>mmoyers@gmail.com</u>; OH: Wed. 10:30-11:30

About Me: General

- PhD from UPenn
- Researcher at Bell Labs/ AT&T Labs
- At UW since 2000
- My research:
 - Probabilistic databases
 - Data privacy
 - Big data: parallel query complexity

Course Format

- Lectures MWF, 9:30am-10:20am
- Sections: Th 8:30-9:20, 9:30-10:20
 - Content: exercises, tutorials, questions
 - Location: See course website
- 6 Homeworks assignments
- Lots of short web quizzes
- Midterm and final

Communications

- Web page: http://www.cs.washington.edu/344
 - Lectures will be available there (see calendar)
 - Homeworks will be available there
 - Web quizzes will be available there
- Mailing list
 - Announcements, group discussions
 - You are already subscribed
- Message board
 - Great place to ask assignment-related questions

Textbook

Main textbook, available at the bookstore:

 Database Systems: The Complete Book, Hector Garcia-Molina, Jeffrey Ullman, Jennifer Widom

Second edition.

Most important: COME TO CLASS ! ASK QUESTIONS !

Other Texts

Available at the Engineering Library (not on reserve):

- Database Management Systems, Ramakrishnan
- XQuery from the Experts, Katz, Ed.
- Fundamentals of Database Systems, Elmasri, Navathe
- Foundations of Databases, Abiteboul, Hull, Vianu
- Data on the Web, Abiteboul, Buneman, Suciu

Grading

- Homeworks 30%
- Web quizzes 20%
- Midterm 20%
- Final 30%

Six Homeworks

H1 and H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: XML and XQuery with Saxon
H5: SQL in Java (JDBC)
H6: Parallel processing with MapReduce

About the Homeworks

- Homeworks will take a significant amount of time but most time should be spent *learning*
- Very practical assignments
- Put everything on your resume!!!
 - SQL, SQLite, SQL Server, JDBC, XML, XQuery, Saxon, Amazon Elastic MapReduce, Pig Latin, ...

Many Web Quizzes

- Class token on the white board: write it down
- Very short online tests
- Can take many times: best score counts!
- Provide explanations for wrong answers
- Will help you
 - Test your knowledge
 - Stay in synch with class
 - Get ready for homeworks

Due date: Saturdays, but check website

Midterm and Final

- Check course website for dates
- Location: in class

 Check past offerings of 344 and 444 for practice exams with solutions

Outline of Today's Lecture

- 1. Overview of database management systems
 - 1. Why they are helpful
 - 2. What are some of their key features
 - 3. What are some of their key concepts
- 2. Course content

Database

What is a database ?

Give examples of databases

Database

What is a database ?

• A collection of files storing related data

Give examples of databases

 Accounts database; payroll database; UW's students database; Amazon's products database; airline reservation database

Database Management System

What is a DBMS ?

Give examples of DBMSs

Database Management System

What is a DBMS ?

• A big C program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Give examples of DBMSs

- Oracle, IBM (DB2, Informix), Microsoft (SQL Server, Access)
- Sybase
- Open source: MySQL (Sun/Oracle), PostgreSQL
- Open source library: SQLite

We will focus on relational DBMSs most quarter

An Example: Online Bookseller

- What data do we need?
 - Data: Information on books, customers, pending orders, order histories, trends, preferences, etc.
 Massive data: hundreds of GB and growing!
- What capabilities on the data do we need?
 - Find specific book, list all books in a certain category and price range, generate an order history, produce sales figures grouped by state, etc
- Data is persistent: outlives application
- Data is safe: from failures, malicious users etc
- Multi-user access

Multi-user discussion

- Jane and John both have ID number for gift certificate (credit) of \$200 they got as a wedding gift
 - Jane @ her office orders "The Selfish Gene, R. Dawkins" (\$80)
 - John @ his office orders "Guns and Steel, J. Diamond" (\$100)
- Questions:
 - What is the ending credit?
 - What if second book costs \$130?
 - What if system crashes?

Summary Required Data Management Functionality

- 1. Describe real-world entities in terms of stored data
- 2. Persistently store large datasets
- 3. Efficiently query & update
 - 1. Must handle complex questions about data
 - 2. Must handle sophisticated updates
 - 3. Performance matters
- 4. Change structure (e.g., add attributes)
- 5. Concurrency control: enable simultaneous updates
- 6. Crash recovery
- 7. Security and integrity

Discussion

- Did you ever encounter a data management problem?
 - Experimental data from a homework?
 - Personal data?
 - Other data?
- How did you manage your data?

DBMS Benefits

- Expensive to implement all these features inside the application
- DBMS provides these features (and more)
- DBMS simplifies application development

Client/Server Architecture

- There is a single *server* that stores the database (called DBMS or RDBMS):
 - Usually a beefy system, e.g. IISQLSRV1
 - But can be your own desktop...
 - ... or a huge cluster running a parallel DBMS
- Many *clients* run apps and connect to DBMS
 - E.g. Microsoft's Management Studio
 - Or psql (for PostgreSQL)
 - More realistically some Java or C++ program
- Clients "talk" to server using JDBC protocol

Key Data Mngmt Concepts

- Data models: how to describe real-world data
 - Relational, XML, graph data (RDF)
- Schema v.s. data
- Declarative query language
 - Say what you want not how to get it
- Data independence
 - Physical independence: Can change how data is stored on disk without maintenance to applications
 - Logical independence: can change schema w/o affecting apps
- Query optimizer and compiler
- **Transactions**: isolation and atomicity

People

- **DB application developer**: writes programs that query and modify data (344)
- **DB designer**: establishes schema (344)
- **DB administrator**: loads data, tunes system, keeps whole thing running (344, 444)
- **Data analyst**: data mining, data integration (344, 446)
- **DBMS implementor**: builds the DBMS (444)

What This Course Contains

- Focus: Using DBMSs
- Relational Data Model
 - SQL, Relational Algebra, Relational Calculus, datalog
- Semistructured Data Model
 - XML, XPath, and XQuery
- Conceptual design
 - E/R diagrams, Views, and Database normalization
- Transactions
- Parallel databases, MapReduce, and Pig-Latin
- Data integration and data cleaning

Content through Homeworks

H1 and H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: XML and XQuery with Saxon
H5: SQL in Java (JDBC)
H6: Parallel processing with MapReduce

What to Do Now

http://www.cs.washington.edu/344

- Homework 1 is posted!
 - Simple queries in SQL Lite
 - See tomorrow's sections
 - Homework due next Wednesday
- Webquiz 1 is open!
 - Create account at <u>http://newgradiance.com/</u>
 - Use course token
 - Webquiz due next Saturday