Introduction to Data Management CSE 344

Lecture 27: Misc Topics

Magda Balazinska - CSE 344, Fall 2012

Plan For Today

- · Overview of various topics in data mgmt
 - A bit more about data integration
 - Data management and cloud computing

Magda Balazinska - CSE 344, Fall 2012

Motivation

· See first few slides of:

http://www.cs.washington.edu/education/courses/cse544/09au lecture-notes/lecture18/lecture18.pdf

- Data integration raises the problem of duplicate records
- · Goal: "resolve" the entities
 - Find matching entities

Magda Balazinska - CSE 344, Fall 2012

Data Integration and Data Cleaning

Magda Balazinska - CSE 344, Fall 2012

Step 1: Find Similar Items

- · Define similarity function between two entities
 - Similarity estimates "x~y"
 - For each attribute, use a string similarity function
 - Edit Distance
 - Jaccard Similarity of k-grams
 - Other
 - Combine similarity results for different attributes
- · Return pairs with similarity above threshold

Magda Balazinska - CSE 344, Fall 2012

More on Similarity Functions

- · No universally good similarity function
 - Cosine similarity
 - Hamming distance
 - Q-gram
 - Smith-Waterman distance
 - Soundex distanceTF/IDF
 - many more
- An interesting approach: compute all these distances!
 Each distance becomes a feature. Train a classifier to decide on similarity based on all these features.

Magda Balazinska - CSE 344, Fall 2012

Step 2: Merge Similar Items

While similar records exist

Identify two similar records r and s

Replace them with the output of merge(r,s)

Desirable properties of merge(r,s)

- · Merge record with itself, get the record back
- Merging r with s = merging s with r
- Merge (merge(r,s), t) = merge(r, merge(s,t))
- If x is similar to y then merge(x,y) is defined

Magda Balazinska - CSE 344, Fall 2012

Data Management as a Cloud Service

Magda Balazinska - CSE 344, Fall 2012

Cloud Computing

"Style of computing in which dynamically scalable and often virtualized resources are provided as a service over the

Examples Services Today

- Amazon SimpleDB, RDS, Elastic MapReduce Websites
 - Part of Amazon Web services
- Google App Engine Datastore Website
 - Part of the Google App Engine
- Microsoft SQL Azure
 - Part of Windows Azure
- · Very dynamic space! Need to check docs regularly!

Magda Balazinska - CSE 344, Fall 2012

A definition

· Basic idea

- Developer focuses on application logic
- Infrastructure, software, and data hosted by someone else in their "cloud"
- Hence all operations tasks handled by cloud service provider

Magda Balazinska - CSE 344, Fall 2012

10

Cloud Computing History

- "Computation may someday be organized as a public utility" (John McCarthy – 1960)
- Late 1990's: Infrastructure as a Service (i.e., rent machines)
- Late 1990s': Software as a service (e.g., Hotmail, Salesforce)
- Early 2000s: Web services
- 2006: Amazon Web Services
- · And now it's a craze!

Magda Balazinska - CSE 344, Fall 2012

11

Levels of Service

- · Infrastructure as a Service (laaS)
 - Example Amazon EC2
- Platform as a Service (PaaS)
 - Example Microsoft Azure, Google App Engine
- Software as a Service (SaaS)
 - Example Google Docs

Magda Balazinska - CSE 344, Fall 2012

How About Data Management as a Service?

- · Running a DBMS is challenging
 - Need to hire a skilled database administrator (DBA)
 - Need to provision machines (hardware, software, configuration)
 - · If business picks up, may need to scale quickly
 - · Workload varies over time
- Solution: Use a DBMS service
 - All machines are hosted in service provider's data centers
 - Data resides in those data centers
 - Pay-per-use policy
 - Elastic scalability
 - No administration!

Magda Balazinska - CSE 344, Fall 2012

Basic Features for Data Management as a Service

- · Data storage and query capabilities
- · Operations and administration tasks handled by provider
 - Include high availability, upgrades, etc.
 - Elastic scalability: Clients pay exactly for the resources they consume; consumption can grow/shrink dynamically
 - · No capital expenditures and fast provisioning

Magda Balazinska - CSE 344, Fall 2012

14

Types of Data Management as a Service

Three different types exist at the moment

- · Relational data management systems (e.g., SQL Azure)
- Simplified data mgmt systems (e.g., Amazon SimpleDB)
 Also called "NoSQL" systems.
- · Analysis services such as Amazon Elastic MapReduce

Magda Balazinska - CSE 344, Fall 2012

15

Amazon Web Services

- Since 2006
- "Infrastructure web services platform in the cloud"
- Amazon Elastic Compute Cloud (Amazon EC2 $^{\text{TM}}$)
- Amazon Simple Storage Service (Amazon S3™)
- Amazon SimpleDB™
- Amazon Elastic MapReduce™
- And more...
- · And growing...

Magda Balazinska - CSE 344, Fall 2012

16

Amazon EC2

- Amazon Elastic Compute Cloud (Amazon EC2™)
- · Rent compute power on demand ("server instances")
 - Select required capacity: small, large, or extra large instance
 - Share resources with other users (multitenant): Virtual machines
 - Variety of operating systems
- Includes: Amazon Elastic Block Store
 - Off-instance storage that persists independent from life of instance
 - Highly available and highly reliable

Magda Balazinska - CSE 344, Fall 2012

17

Amazon S3

- Amazon Simple Storage Service (Amazon S3™)
 - "Storage for the Internet"
 - "Web services interface that can be used to store and retrieve any amount of data, at any time, from anywhere on the web."
- · Some key features
 - Write, read, and delete uniquely identified objects containing from 1 byte to 5 TB of data each
 - Objects are stored in buckets. User chooses geographic area
 - A bucket can be accessed from anywhere
 - Authentication
 - Reliability

Magda Balazinska - CSE 344, Fall 2012

Amazon RDS

- Amazon Relational DB Service (Amazon RDSTM)
 - Web service that facilitates set up, operations, and scaling of a relational database in the cloud
 - Full capabilities of a familiar MySQL or Oracle DBMS
- · Some key features
 - Automated patches of DBMS
 - Automated backups for user-defined retention period

 - Elastic scalability but can only scale-up
 Make your instance more powerful (CPU and memory)
 - · Attach more storage to your instance
 - Can scale-out only by adding read replicas

Magda Balazinska - CSE 344, Fall 2012

Amazon SimpleDB

- An example of a NoSQL data management system
- · See NoSQL Lecture

Magda Balazinska - CSE 344, Fall 2012

20

Some Current Research Topics

Magda Balazinska - CSE 344, Fall 2012

Some Research Topics in Database Community

- Big Data management and analytics
- Scaling OLTP (consistency issues, etc.)
- · Multi-tenancy for OLTP and OLAP
- · Privacy and security
- · Exploiting new hardware
- Social data, crowd-sourcing + data management
- Pricing + data management
- Data stream processing
- etc.... see CIDR, SIGMOD, and other db confs.

Magda Balazinska - CSE 344, Fall 2012