Finding similar items

CSE 344, section 10
June 2, 2011

In this section, we’ll go through some examples of finding similar item sets. We'll
directly compare all pairs of sets being considered using the Jaccard similarity. We’ll
also see small examples of minhashing and locality-sensitive hashing methods, which
are intended to help make the similarity pairing tractable for many possible sets.

The examples we’ll see in this assignment are taken from your textbook, specifically
the exercises for Garcia-Molina section 22.3 (pages 1115-6) and section 22.4 (page 1122).

1 Jaccard similarity and minhashing

1. Compute the Jaccard similarity of each pair of the following sets: {1, 2, 3, 4, 5},
{1,6,7},{2,4,6,8}.

Solution:
Recall the general formula for the Jaccard similarity of two sets:

_|AnB
~ |AUB]

J(A,B)

For the three combinations of pairs above, we have

J({1,2,3,4,5},{1,6,7}) =
1({1,2,3,4,5},{2,4,6,8}) =

J({1,6,7},{2,4,6,8}) =

N PN DN -

2. What are all the 4-grams of the following string?
abc def ghi
Remember that white space (denoted by ;) counts!

Solution:

abc,
bcd
c de
pdef
def,
ef g
fogh
ughi

3. Suppose that our universal item set is {1,2,...,10}, and signatures for sets are
constructed using the following list of permuations for the universal set:
e (1,2,3,4,5,6,7,8,9,10)
e (10,8,6,4,2,9,7,5,3,1)
e (4,7,2,9,1,5,3,10,6,8)
Construct minhash signatures for the following sets:
(@) {3,6,9}
(b) {2,4,6,8}
(© {2,3,4}

Solution:
Each set’s signature consists of one minhash value from each permutation of the
universal set; this value is the first value in the permutation that appears in the
subset. Hence our three signatures are:

(@) (3,6,9)

(b) (2,8,4)

(© (2,4,4)

4. Suppose that instead of using particular permutations to construct signatures for
the three sets of the previous problem, we use hash functions to construct the
signatures. The three hash functions we use are:

flx
8(
h(

Compute the signatures for the three sets, and compare the resulting estimate of
the Jaccard similarity of each pair with the true Jaccard similarity.

x mod 10
(2x+1) mod 10
(3x +2) mod 10

)
) =
) =

X
X

Solution:
Instead of finding the first value in the permutation that appears in the subset,
we compute the minhash as the smallest value of the hash function in the whole
subset. This yields the following three signatures:

(@) (3,3,0)

(b) (2,3,0)

(© (2,51)
To estimate the Jaccard similarity from a minhash vector (derived either from
permutations or hash functions), we find the number of matching minhash values
in corresponding positions in the two subsets” minhash vectors. Estimating the
Jaccard similarity using both permutation minhash vectors (problem 3) and hash
function minhash vectors (this problem) gives:

Set 1 | Set 2 | Actual] | Hash est. | | Perm. est. |
@ 13,69 | (©) (2468 | 1/6 2/3 0/3
@) {3,6,9} | (0 {2,3,4} | 1/5 0/3 0/3
®) {2,4,6,8) | (o) {2,3,4) | 2/5 1/3 2/3

We can see that these minhash vectors, whether computed from universal set
permutations or a list of hash functions, are quite poor estimators of the Jaccard
similarity. This is understandable given how short the minhash vectors actually
are. We should get more permutations of the universal set or more hash functions
to make the minhash vectors longer.

5. Suppose you have some documents, and have stored k-grams of these documents
in a large table. Each column of the table represents all the k-grams for a single
document, and each row r represents the ' k-gram for all the documents. (Be-
cause documents vary in length, there may be empty cells in the bottom fringes of
the table.) The “schema” of the table — that is, the mapping between row indexes
in the table and document IDs — is stored separately.

Show how you would use MapReduce to compute a minhash value for each of
your documents, using a single hash function (not a permutation of a dictionary
of possible k-grams). You can assume that every processor gets a copy of the
schema, but:

(@) The table must be partitioned across the processors by rows.

Solution:

In this partitioning, each processor receives a subset of the k-grams for every
document. Hence, each processor can’t compute the minhash for each doc-
ument directly from its input data. Instead, it must compute the hash value
for each of its k-grams separately. Then, the hash values must be grouped
by document ID across the whole system. Finally, each processor finds the
minimum hash value for each of the documents it is given.

The MapReduce input is given as a set of key-value pairs, where each key is
a document ID, and each value is a k-gram from that document. The map
function then computes the hash value:
map (k: docID, v: kgram) {

emit_intermediate(ik = k, iv = hash(v))

3

The MapReduce system groups the hashes by document ID, then the reduce
function finds the minimum hash value:

reduce (ik: docID, ivs: hashvall[]) {

var minhash := INFINITY
for each iv in ivs {

if iv < minhash {

minhash := iv

}
}
emit_final(fk = ik, fv = minhash)

(b) The table must be partitioned by columns.

Solution:

This split is easier to program, but also much harder to build, unless the
table is stored in column-major order (which is common for data mining
applications like this, but relatively rare otherwise). Here, all the k-grams
for a document go to the same processor. We can actually use the same input
format and the same map and reduce functions as before, but this doesn’t
take advantage of the fact that the input data is already grouped for us.

Instead, let the input keys be document IDs as before, but now let the input
values be the list of every k-gram in the document. Then all the work is
done in the map function:
map (k: docID, v: kgram[]) {
var minhash := INFINITY
for each kgram in v {
var h := hash(kgram)
if h < minhash {
minhash :=h
}
+
emit_intermediate(ik = k, iv = minhash)

}

And the reduce function becomes a no-op:

reduce (ik: docID, ivs: hashvall[]) {

// There will be only one element in ivs([],

// because only one map() produces each ik.

emit_final(fk = ik, fv = ivs[0])
}
In fact, Hadoop will let you simply omit the Java code for the Reducer (re-
duce function closure) and not ask for it to be called at all. This saves the
time to do the (useless) grouping of intermediate data.

2 Locality-sensitive hashing

1. Suppose we have a table where each tuple consists of three fields/attributes
(name, address, phone number), and we need to do an entity resolution on this
table to find those sets of tuples that refer to the same person. For concreteness,
suppose that the only pairs of tuples that could possibly be total edit distance 5
or less from each other consist of a true copy of a tuple and another corrupted
version of the tuple. In the corrupted version, each of the three fields is changed
independently. 50% of the time, a field has no change. 20% of the time, there is
a change resulting in edit distance 1 for that field. There is a 20% chance of edit
distance 2 and 10% chance of edit distance 10. Suppose there are one million pairs
of ths kind in the table.

(a)

(b)

How many of the million pairs are within total edit distance 5 of each other?
Solution:

Let’s consider those pairs of tuples that are more than 5 away from each
other. There are two possibilities that would cause this: all 3 fields have a
change of edit distance 2 (probability: (.2)> = .008 = .8%), and at least one
field has a change of edit distance 10 (probability: 1 — (.9)% = 271 = 27.1%).
The total proportion of tuple pairs that are 5 or less away from each other is
then 1 — 279 = 72.1%, so 721,000 pairs are within edit distance 5.

If we hash each field of all the tuples to one million buckets, how many of
these one million pairs will hash to the same bucket for at least one of the
three hashings?

Solution:

By the definition of a hash function, identical field values will hash to the
same bucket. Because each field pair is the same 50% of the time, there is
a 50% chance that each pair of fields hashes to the same bucket, and a 50%
chance that each pair hashes to different buckets.

The probability that each pair of tuples hashes to the same bucket for at
least one of the three fields, is just 1 less the probability that they hash to
different buckets for all three fields: 1 — (.5)° = 1 —.125 = .875, or 87.5%.
Hence, there are 875,000 pairs of tuples that hash to the same bucket for at
least one hashing.

(c) How many false negatives will there be? That is, how many of the one
million pairs are within total edit distance 5, but will not hash to the same
bucket for any of the three hashings?

Solution:

There are three cases of the differences between the fields that will cause a

false negative:

o All three fields have a difference with edit distance 1. The probability of
this case, over all possible choices for the chagne or lack thereof in all
three fields, is (.2)° = .008 = .8%.

e One field has edit distance 2, and the other two have edit distance 1. The
probability is 3(.2-.2-2) = .024 = 2.4%; we multiply by 3 because there
are 3 possible choices for the field with edit distance 2.

e Two fields have edit distance 2, and the other one has edit distance 1. The
probability is 3(.2-.2-2) = .024 = 2.4%; we multiply by 3 (similar to
above) because there are 3 possible choices for the pair of fields with edit
distance 2.

The total probability of all three cases is .056 = 5.6%, so we should expect
56,000 false negatives.

2. The functionp =1— (1 — sr)b gives the probability p that two minhash signatues
that come from sets with Jaccard similarity s will hash to the same bucket at least
once, if we use an LSH scheme with b bands of r rows each. For a given similarity
threshold s, we want to choose b and r so that p = 1/2 at s. Suppose signatures
have length 24, which means we can pick any integers b and r whose product is
24. That is, the choices for r are 1, 2, 3, 4, 6, 8, 12, or 24, and b must then be 24/r.

(@) If s =1/2, determine the value of p for each choice of b and r. Which would
you choose, if 1/2 were the similarity threshold?
Solution:

24
=1—(1/2)* ~ 99999994

=1—(3/4)"* ~0.968
(7/8)® ~ .657
(15/16)° ~ 321

e r=1,b=24p=1-(1—(1/2)")

o r=2b=12:p=1—(1—(1/2)%

e r=3b=8p=1-(1-(1/2%" =1—

er=4b=6p=1—(1—(1/2)") =1—

e r=6b=4p=1—(1—(1/2)° =1-(63/64)* ~ .0611

e r=8b=3p=1-(1-(1/2)°%) =1-(255/256)° ~ .0117

o r=12b=2:p=1—(1—(1/2)"%)" =1 — (2047/2048)* ~ 4.882 - 10~*

er=24b=1 p=1-(1-(1/2) =1 (16777215/16777216)" ~
5.960 - 10~®

It's clear that, in this case, you should choose to minimize the number of

rows (positions within a signature), by letting r = 1.

—_

2

(o)}

4

3

)
)
)
)

N |

(b) For each choice of b and r, determine the value of s that makes p = 1/2.
Solution:
We can solve for s in the formula for p:

p=1-(1-s)
1—p=(1-5")"
YT—p—1-+
1—Y1—p=5s"

s=1/1—-Y1—p

Then we can compute s by plugging in p and each choice of » and b we're
interested in:

r=1b=24s=1— ¥1/2 ~ 0.0284
r=2b=12:s = +v/1— ¥1/2 ~ 0.2369
r=3b=8s=+v1—1/2~ 04361
r=4,b=6:s=+v1—1/2 ~ 05747
r=6b=4s=+/1—v1/2~0.7361
r=8b=23s=+v1—v1/2~ 0.8209
r=12,b=2:s= 3v/1— ¥1/2 ~ 0.9027
r=24b=1s= 31/2 ~ 09715

	1 Jaccard similarity and minhashing
	2 Locality-sensitive hashing

