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In today’s section, we will be covering some more examples of using MapReduce
to implement relational queries. Recall how MapReduce works from the programmer’s
perspective:

1. The input is a set of (key, value) pairs.

2. The map function is run on each (key, value) pair, producing a bag of intermediate
(key, value) pairs:

map (inkey, invalue):

// do some processing on (inkey, invalue)

emit_intermediate(hkey1, hvalue1)

emit_intermediate(hkey2, hvalue2)

// ...

3. The MapReduce implementation groups the intermediate (key, value) pairs by the
intermediate key. Despite the name, this grouping is very different from the group-
ing operator of the relational algebra, or the GROUP BY clause of SQL. Instead of
producing only the grouping key and the aggregate values, if any, MapReduce
grouping also outputs a bag containing all the values associated with each value
of the grouping key. In addition, grouping is separated from aggregation compu-
tation, which goes in the reduce function.

4. The reduce function is run on each distinct intermediate key, along with a bag of
all the values associated with that key. It produces a bag of final values:

reduce(hkey, hvalues[]):

// do some processing on hkey, each element of hvalues[]

emit(fvalue1)

emit(fvalue2)

// ...
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Suppose you have two relations: R(a, b) and S(b, c), whose contents are stored as
files on disk. Before you can process these relations using MapReduce, you need to
parse each tuple in each relation as a (key, value) pair.

This task is relatively simple for our two relations, which only have two attributes to
begin with. Let’s treat R.a as the “key” for tuples in R (note that this does not have to be
a true key in the relational sense), and similarly, let’s treat S.b as the key for S.

For the “values” of the (key, value) pairs, we won’t use the single non-key attribute.
Instead, we’ll use a composite value consisting of both attributes, plus a tag indicating
where the value came from. So, for relation R, the values will have three components,
value.tag, which is always the string “R”, and value.a and value.b for the two attributes
of R. Similarly, relation S’s tuples will have MapReduce values containing value.tag,
which is always “S”, and value.b and value.c for S’s attributes. This convention allows
us to use the same map function for tuples from both relations; we’ll see the use of that
soon.

Given this notation for the (K, V) pairs of R and S, let’s try to write pseudocode
algorithms for the following relational operations:

1. Selecting tuples from R: σa<10R

Solution:
In this simple example, all the work is done in the map function, where we copy the
input to the intermediate data, but only for tuples that meet the selection condition:

map(inkey, invalue):

if inkey < 10:

emit_intermediate(inkey, invalue)

Reduce then simply outputs all the values it is given:

reduce(hkey, hvalues[]):

for each t in hvalues:

emit(t)
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2. Eliminate duplicates from R: δ(R)

Solution:
For this problem we will use a simple trick, described in your textbook — we’ll
use the fact that duplicate elimination in the bag relational algebra is equivalent to
grouping on all attributes of the relation. MapReduce does grouping for us, so all
we need is to make the entire tuple the intermediate key to group on.

map(inkey, invalue):

// We won’t use the intermediate value,

// so we just put in a dummy value

emit_intermediate(invalue, ’abc’)

Once we do that we just output the intermediate key as the final value:

reduce(hkey, hvalues[]):

emit(hkey)

3. Natural join of R and S: R 1R.b=S.b S

Solution:
The map function outputs the same value as its input, but changes the key to
always be the join attribute b:

map(inkey, invalue):

emit_intermediate(invalue.B, invalue)

Then, after the MapReduce system groups together the intermediate data by the
intermediate key, i.e. the b values, we use the reduce function to do a nested loop
join over each group. Because all the values from each group have the same join
attribute, we don’t check the join attribute in the nested loop. We do need to check
which relation each tuple comes from, so that (for example) we don’t join a tuple
from R with itself, or with another R tuple.

reduce(hkey, hvalues[]):

for each r in hvalues:

for each s in hvalues:

if r.tag = ’R’ and s.tag = ’S’:

emit(r.a, r.b, s.c)

Note that the analogy with the nested loop join breaks down in another way: in-
stead of reading the relations directly from disk, we have used MapReduce to build
the entire Cartesian product of R and S, and then grouped the Cartesian product
by the join attribute b. So this is actually a very inefficient way to compute a join.
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4. 3-way natural join: R 1R.b=S.b S 1S.c=T.c T, where we introduce a new relation
T(c, d).

Solution:
One way to do this join might be to split the join into two MapReduce jobs. The
first job does one of the joins, using the previous algorithm for a single natural join.
The second job then joins the result of the first job with the relation left over.

This approach actually results in two different possible implementations, depend-
ing on which pair of relations we want to join first. One way to judge which
method is “better” is to look at the number of tuples in each relation, and compare
the relative sizes of the first job’s output under each implementation. The smaller
size for the first join is then considered better, because in our naı̈ve view, smaller is
faster — smaller data sets mean less network traffic, which is the real bottleneck of
a distributed system like MapReduce (although the gap is narrowing rapidly).

5. Grouped and aggregated join: γ(a,sum(c)→s) (R 1R.b=S.b S)

Solution:
As with the three-way join, we’ll probably want to use more than 1 MapReduce
job for this problem. One approach uses 2 jobs: the first job does the 2-way join
as we did in the problem above, then the second job does all the grouping and
aggregation. Grouping is done automatically by MapReduce; all we have to do is
to output the grouping attribute(s) as the intermediate key in map:

map (inkey, invalue):

emit_intermediate(invalue.a, invalue)

Then we can compute the sum aggregate in reduce:

reduce (hkey, hvalues[]):

val sum := 0

for each t in hvalues:

sum += t.c

emit(hkey, sum)
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Another solution approach is based on the observation that you don’t need to carry
around all the tuples in the Cartesian product to compute the aggregate value
sum(C). You do need all three distinct attributes, because the same tuple from S
may appear many times in the join, due to several tuples in R that have the same
b attribute). But you don’t need every possible combination of values of all three
attributes.

Instead, you can do the grouping and aggregate computation on S alone, grouping
on S.b instead of R.a. Then join the grouped results with R. Finally, repeat the
grouping and aggregation (to take care of those S repeats), but with R.a as the
(correct) grouping attribute.

This sounds more complicated, and it is, using 3 MapReduce jobs instead of two.
Can you think of a scenario where this 3-job algorithm might actually be faster
than the 2-job algorithm?
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