Introduction to Data Management
CSE 344

Lecture 14: E/R Diagrams

Midterm

- Next Monday in class
- Content:
 - Lectures 1 through 13
 - Homework 1 through 4
- Open books and open notes
 - But no portable devices (no laptops, no phones, etc.)
- Three questions:
 - Question 1: SQL and Physical tuning
 - Question 2: Relational algebra, calculus, datalog
 - Question 3: XML/XPath/XQuery

How To Study

- Go over the lecture notes
- Read the book
- Go over the homeworks
- Practice
 - Practice webquiz will be posted Tuesday or Wednesday
 - Look at the midterm from 344 Spring 2011
 - Look at both midterm and final from 444 past years
 - Look for questions about SQL, relational algebra, and XML/Path
- Ask Kristi and me questions
- The goal of the midterm is to help you learn!

Today: E/R Diagrams

Motivating scenario

- Customer asks you to help them setup a DBMS
- They want to store information about
 - Companies and various branches inside companies
 - Each company has a name, an address, and a CEO
 - Each company also has a list of key employees
 - Each branch has a name and a market share in $$$
 - Products manufactured by these companies
 - Each product has a name and a description
 - Products are manufactured by different branches

Database Design

- Why do we need it?
 - Need a way to model real world entities in terms of relations
 - Not easy to go from real-world entities to a database schema
- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
 - How to achieve good designs
- Several formalisms exists
 - We discuss E/R diagrams

Database Design Process

Conceptual Model:

Relational Model:
- Tables + constraints
- And also functional dep.

Normalization:
- Eliminates anomalies

Conceptual Schema

Physical storage details

Physical Schema
Entity / Relationship Diagrams

- Objects entities
- Classes entity sets
- Attributes are like in ODL (ODL = Object Definition Language)
- Relationships: like in ODL except
 - first class citizens (not associated with classes)
 - not necessarily binary

Keys in E/R Diagrams

- Every entity set must have a key

What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of A × B
 - $A = \{1, 2, 3\}$, $B = \{a, b, c, d\}$,
 - $A \times B = \{(1, a), (1, b), \ldots, (3, d)\}$
 - $R = \{(1, a), (1, c), (3, b)\}$

- makes is a subset of Product × Company:

Multiplicity of E/R Relations

- one-one:
- many-one
- many-many
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (how?)

Q: What does the arrow mean?

A: A given person buys a given product from at most one store

AND every store sells to every person at most one product

(Why only approximation?)

Converting Multi-way Relationships to Binary

3. Design Principles

What’s wrong?

Moral: be faithful to the specifications of the app!
Design Principles: What’s Wrong?

Moral: pick the right kind of entities.

Moral: don’t complicate life more than it already is.

From E/R Diagrams to Relational Schema

- Entity set → relation
- Relationship → relation

Entity Set to Relation

Product(name, category, price)

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>$19.99</td>
</tr>
</tbody>
</table>

Relationships to Relations

No need for Makes. Modify Product:

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>price</th>
<th>StartYear</th>
<th>companyName</th>
</tr>
</thead>
<tbody>
<tr>
<td>gizmo</td>
<td>gadgets</td>
<td>19.99</td>
<td>1963</td>
<td>gizmoWorks</td>
</tr>
</tbody>
</table>

(watch out for attribute name conflicts)
Multi-way Relationships to Relations

Person

name

ssn

store

name

address

Purchase(prodName, ssn, price)

Multi-Way Relationships to Relations

购

Product

name

price

store

name

address

Purchase(prodName, ssn, price)

Modeling Subclasses

Some objects in a class may be special
- define a new class
- better: define a subclass

Products

Software products

Educational products

So --- we define subclasses in E/R

Subclasses

Product

name

category

price

isa

isa

Software Product

Educational Product

platforms

Age Group

Modeling Subclasses

Some objects in a class may be special
- define a new class
- better: define a subclass

Products

Software products

Educational products

So --- we define subclasses in E/R

Subclasses to Relations

Product

name

category

price

isa

isa

Software Product

Educational Product

platforms

Age Group

Modeling Subclasses

Some objects in a class may be special
- define a new class
- better: define a subclass

Products

Software products

Educational products

So --- we define subclasses in E/R

Understanding Subclasses

- Think in terms of records:
 - Product
 - field1
 - field2
 - SoftwareProduct
 - field1
 - field2
 - EducationalProduct
 - field1
 - field2

Modeling UnionTypes With Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person or by a company

Subclasses to Relations

Product

name

category

price

isa

isa

Software Product

Educational Product

platforms

Age Group

Other ways to convert are possible
See book sec 4.6

Modeling UnionTypes With Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person or by a company

Magda Balazinska - CSE 344, Fall 2011
Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company.

Solution 1. Acceptable but imperfect (What’s wrong?)

Solution 2: better, more laborious