Morphic

* A highly unusual graphical toolkit!

e Originatesin the Self project at Sun

— Self: a prototype-based programming language

— No classes---objects inherit/instantiate by “cloning”
o Self design strongly reflected in Morphic

— Can create Morphic objects, add properties & behavior
without defining classes

— All Morphic objects have uniform, “concrete’ fedl ---
e.g., “shadows’ when dragging

Morphic, Smalltalk-style

o Smalltalk Is class-based, so Squeak
Morphic generates classes “ under the hood”

 You can aso use Morphic in traditional
(non-prototype-based) style.

e Thistutorial will use atraditional class-
based programming style.

Squeak Morphic programming

e (Goal: to get you coding something

“Interesting” as quickly as possible.
o Steps:

— (Enter aMorphic world)

Define & instantiate your own Morph
Customizing your Morph
Animating Morphs
Toolkits and hierarchical composition

> W

Morphs in the class browser

| fiew morph...

- emkla =

- = k=T -

;

-
Add a new motph

dizfnizs thiz menu

"

from paste tuffer
from a file...
from alphatetical list

grab patch from soreenn

make new Jdrawing
make link to project...

b

Bazic
Bookz
Componetits
Demo
Experimetital
rames
Eernel
Eeuniwon
Metiuz
Palettes
coripting

Me e = = = mk

b
4
b
4
b
4
b
4
b

Morphic-Windows
Morphic-Meniusz
Morphic-Compotietits
Motrphic-Components B
Morphic-Sariptitig

BazicButton
CategorvVWiewer
MethodMorph
PhrazeWtrapperMorph
Flaver

Mnrphic—ﬂcript@ﬂg 51_.1;

class

ifiztarice v

All Morphic objects are instances of
subclasses of Morph.

Squeak looks for Morph subclassesin
class categories starting with M or phic-

Morphs found in these packages will be
shown in the new mor ph... submenu

1. Defining your own Morph

* You can add Morph subclasses anywhere.

« But, you will probably want to create a new class
category for your Morphs, e.g. M or phic-K eunwoo

 |nthis category, define a new subclass of Morph:

X G

system Browser

Morphic-Fostzeript Eilt
Morphic-Eeutiwoo
Ballooti-Geometty
Balloon-Fillz
Balloon-Collections

FizhMorph

ifiztance | ¥

class

— all -
0 Meszagses

JI-.-I::urph sub<lazs: #*FishMotrph
instanceVariableNames: "
clazzVariableNames:
poolDictionaries: ™

category: 'Morphic-Eeunwoo

Experimetital
rammes
Eertiel
Eeunwoo
Menus
Palettes

Crtimtitio

You'redonel BuUt...

L i e e B e

(EishMorph |

X 99 O
@

3
G

Fizh

O

e Your new morph category, and morph, should appear in the new
mor ph... submenu.

e Youinherit al the default Morph behaviors. (The default
rendering is ablue rectangle.)

« Default behaviors are nice, but they’ re not yours...

e (Important: See various online tutorials for information on halos,
direct manipulation of Morphs, etc.)

Alternate way to show instances

1. Open aworkspace
2. Create an instance with new
3. Send theopeninWorld message

w B Workspace

¥ = FizhbMorph nhew.
¥ opetilnWorld,

What' s the “world”?

* The global namespace* contains a variable named
World.

 When you enter aMorphic “world”, World Is set
to point to the current “world”

* When you send the openinWorld message to a
Morph, it gets the current World and adds itself.

* For the curious, the global namespace is a dictionary named Smalltalk. Do
Smalltalk inspect in any Workspace to get alook at it.

Okay, but what’sa “world”?

Q: What'sa“world”?
A: An instance of a subclass of PasteUpMorph

Q: What’sa PasteUpM or ph?

A: A Morph where you can drop other morphs, and
they stick---think of it as a “desktop-like” morph.

2. Customizing your Morph

 Morphs are aimost endlessly flexible
 For brevity, we will begin by customizing
only two aspects.
— Appearance (“look”)
— Response to mouse input (“feel”)

2(a). Morph drawing | 2]

Like most graphics toolkits, components paint themselves
onto agraphics context provided by the system.

In Squeak, graphics contexts are instances of Canvas
Canvas defines many methods for drawing...

E_:n: = Class Browser: Can _ _ O
Cativasz instatice fy clazs
drawing-general fillOralcolor:
drawing-suppott fillOwal:color: borderWidth: borde
drawing-rectangles fillOwal:fillstvle:
drawitig-ovals fill0sral:fillstyle: borderWidth: bo
drawing-polvgons framelwal:color:
drawitig-images framedval:width:color:

Falul alatd—L ok K B s

=\l rillowal: r color: ¢

zelf fill0val: + <olor: < borderWidth: 0 torderColor: Color
tranzpatrent,

Graphical environments,
A guestion

Q: When should components paint themselves?

A: Often. It’scomplicated...
— When created
— Whenever onscreen area is covered, then uncovered

— Whenever it receives input that changes its state
 (e.g., pressed button must change appearance)

— Whenever the state of the thing it represents changes
 (e.g., an animation of a physics simulation)

— ...and more...

2(a) Drawing components [2]

Therefore, components draw when asked by the
system, onto the Canvas provided.

When object needs arepaint, it will be sent the
drawOn: message, which takes a Canvas:

T T ———— =
Morphic-Eerniel Morph drawing drawin.:
Morphic-EBazic MorphExtension cegmetty drawilOnCanvas:
Morphic-Worlds Morphichodel rotate zcale and |drawPostzeriptOn.:
Morphic-Support cegmetty testing] drawSubmorphsOn.

Morphic-Text Support | instatice | ¥

clazs

seometty eTovw

flazh

drawvin: aCanvas

aCanvas [illEectangle: self btoundsz fillStvle: zelf fillStvle,

2(a) Customized drawing [3]

e To customize drawing, Ssimply
override thedrawOn: message

® B system Browser o]
Morphic-Postzeript Canq Eizhhorph -- all -- drawOn:
Morphic-Pozstzeript Filte drawing

Morphic-Keunwoo
Ballootni-Geomettw
Balloon-Fillzs :
Ballooni-Collections instance | ¥ | class

drav(n: aCanvas
| mwEounds bodvBounds tailBoutds |
mvEBounids = zelf btounds.
todvwBoundz = (myBoundz origin translateBy: 10@0) corner: myvBounds corner,
aCanvas fill0val: todvBound:z fillStvle: zelf illStvle,
tailBoundz = myBound:z origin corner: (mvBoundz left + 10)@{mvBound: bottom),
aCanivas fill0wal: tailBounds fillstvle: zelf fillstvle,

Aside: aword about geometry

 Two natural screen coordinate systems:

— “Text-like": top left corner is (0, 0)
Y coordinate increases as you go down screen

— “Math-like”: bottom left corner is (0, O)
Y coordinate increases as you go up screen

e Morphic has both...

— X/x: and y/y: methods use math-like
— position/position: methods use text-like

2(b) Custom event handling [1]

* |nput events are similar to painting events

* To define your own event action, override a
message that handles the event, e.g. mouseDown:

¥ [Class Browser: Morph Q |
Morph instance ? clazs
event handling kevtoardfocusChatige:

pen mouzeDowt,

fiaming mouzeEnter:

tepping and presefnter mouseEnterDragoing:

Mers mouseleave;

haloz and talloon help mouzeleavelragsing:

| mouseDown: evt
I "Handle a mouze down evetnit, The default responize iz to let mv
eventHandler, if anvy, handle it.”

self’ evenitHandler ifHotHil:
[zelf eventHandler mouzelDown: evt fromMorph: zelf].

2(b) Custom event handling [2]

* An example of handling mouseDown event:

¢ [Class Browser: FishMorph
FizhMorgh instance ? class
ezl B mouzeDow.
|event handlinhg
drawing

mouzeDown: evt
2elf color: Color ratido,

R N —

e However, thisis not enough...

2(b) Custom event handling [3]

o Sqgueak does not want to dispatch all eventsto
every Morph in the world (inefficient)

e Toregister interest in an event, you may haveto
override ahandlesX XX: method, e.qg.: 9'

= rowser. Fi h
FizhMorph instance ? clazs
it § hatidlesMouzeDowt.
|event handling mouzelow
drawing D
| handlesMouseDown: evt
Jl + 1rue

More about events...

Event-driven programming isabig idea
Good graphical toolkits provide arich interface to
send/receive/register interest in various events.

Examine the “event handling” method category in
the M or ph base class for event handling methods.

M or phicEvent (in class category Morphic-
Support) isthe class of the “evt” parameter
received by the event handling methods.

3. Animating Morphs

 Morph defines a bunch of methods related to
time-varying properties. Among the most
Important:
— Step
— stepTime
— startStepping
— stopStepping
* These have the intuitively obvious meanings...
o Asusual, override to make stuff happen

4. Hierarchical composition

 Most toolkits have a notion of “containers’,
embodied in aclass.
e Container isitself usually asubclass of the

base Component class, so that Containers
can recursively contain Containers.

— (*Composite” design pattern — Gamma et al.)

 Inthisfashion, arbitrarily complex trees of
components can be created.

Hierarchical composition in
Morphic

 Morphic allows all Morphs to be containers
— (some are better suited than others)

* Morph method addM or ph: can be used to add
any morph to any other.

* Note that addM or ph aone does not constrain the
position of submorphs!
— A submorph may live outside its parent’s physical area.
— But, when this happens, painting often malfunctions

Composition, ct’d

e |f you create your own specialized container
(e.g., BouncingAtomsMorph in Morphic-
Demos), you probably should not call
addMorph directly

 Instead, create your own method, with a
logical name, that calls self addM or ph

— (e.qg., addAtom:)

Composition and delegation

* Adding components to containers allows the
container to delegate responsibility for certain
actions to its child objects

— BouncingAtomsMorph need not explicitly define
behavior of all atoms

o A fundamental principle of OOD: use hierarchical
composition to build objects out of other objects.

