
Outline

� what is a constraint

� the constraint logic programming frame-

work

� declarative and procedural readings of CLP

programs

� the CLP(R) language and its implementa-

tion

1

Some Practical Applications of Con-

straints

� planning, scheduling, timetabling (see

ILOG solver especially)

� con�guration

� electrical circuit analysis, synthesis, and di-

agnosis

� �nancial: options trading, �nancial plan-

ning

� cutting stock problems

� natural language processing

� restriction site mapping (genetics applica-

tion)

� generating test data for communications

protocols

2

De�nition of a Constraint

What is a constraint? Informally, a constraint

is a relation that we would like to be satis�ed.

Examples:

� two columns in a table be of equal widths

� one window on a screen be above another

window

� a resistor in a circuit simulation should

obey Ohm's Law

Advantages: declarative, high-level, natural for

many applications,

Disadvantages: easier to state than to satisfy,

debugging and usability issues, complex inter-

actions with state and object identity

3

Constraints in Constraint Logic Program-

ming

The CLP and logic programming community

uses the following more formal de�nition of

constraint.

The form and meaning of a constraint is spec-

i�ed by a domain D, including syntax for the

constraints, permissible values for the vari-

ables, and meanings of the symbols in the con-

straint.

Example: Y �Y < 1 means di�erent things for

integers, reals, or complex numbers.

De�nition: a primitive constraint consists of

a constraint relation symbol from D with the

correct number of arguments. Each argument

is constructed from variables and the constants

and functions of D.

4

Domains and Constraints

Example domain: the real numbers with the

standard arithmetic functions and relations.

The domain is R, the function symbols are +,

�, � and =, and the constraint relation symbols

are =, <, �, �, and >.

Some other domains: integers, booleans, trees

(�nite or in�nite).

De�nition: a constraint is of the form

c1 ^ : : :^ cn where n � 0 and c1; : : : cn are prim-

itive constraints.

(Note: the UI people normally do not make

a distinction between constraints and primitive

constraints, and also regard for example + as

a constraint itself, rather than a function sym-

bol.)

5

Valuations and Satis�ability

De�nition: a valuation � for a set V of variables

is an assignment of values from the domain to

those variables. For variables V = fX1; : : : Xng

� may be written fX1 ! d1; : : : Xn ! dng.

Let vars(e) be the variables occuring in an ex-

pression e, and vars(C) be the variables occur-

ing in a constraint C.

If � is a valuation for V where vars(C) � V

then it is a solution of C if �(C) holds in the

constraint domain.

A constraint C is satis�able if it has a solution.

Otherwise it is unsatis�able.

Two constraints are equivalent, written C1 $

C2 if they have the same set of solutions.

6

Solver Properties

Constraint solvers accept a constraint as input.

(Remember these can be composed of multiple

primitive constraints.) Output is:

� true (constraints are satis�able)

� false (constraints are unsatis�able)

� unknown

De�nition: a solver is complete if for every

constraint in D the solver's output is either

true or false.

We will not be interested in unsound solvers

(which might output true for unsatis�able con-

straints or false for satis�able constraints).

We prefer that solvers be complete, but for

some domains this is not practical or even pos-

sible.

7

Mini-Exercises

Consider the domain of the reals.

Suppose we have a solver that always outputs

unknown. Is this solver sound? Complete?

Suppose we have a solver that always outputs

true. Is this solver sound? Complete?

Let C1 be the constraint X � 10 ^X +5 = Y .

Is C1 satis�able?

Give a valuation that is a solution for C1, and

a valuation that is not a solution.

Is C1 equivalent to X � 10 ^ Y � 5?

8

The CLP Scheme

CLP(D) is a language framework, where D is

the domain of the constraints.

Example CLP languages:

� Prolog

� CHIP

� Prolog III { domain is rationals, booleans,

and trees

� CLP (�*) { domain is regular sets

� CLP(R) { domain is reals (plus trees, i.e.

the data types that Prolog uses)

9

CLP(R) { Domain and Solver

CLP(R) can solve arbitrary collections of linear

equality and inequality constraints.

It can also solve other kinds of constraints over

the reals if it can �nd the answer using one-

step deductions (�rst �nd this variable using

one constraint, then �nd another variable using

another constraint, etc | but no simultaneous

equations).

10

CLP(R) Examples

Sample goals (just using primitive constraints

{ no user-de�ned rules):

?- X=Y+1, Y=10.

X=11, Y=10

?- 2*A+B=7, 3*A+B=9.

A=2, B=3

? X>=2*Y, Y>=5, X<=10.

X=10, Y=5.

?- X*X*X + X = 10.

maybe

(The last goal does have a solution X=2. The

\maybe" answer means the constraints are too

hard for CLP(R) to solve.)

11

CLP(R) Examples

CLP(R) programs are collections of facts and

rules.

Sample rule:

/* centigrade-fahrenheit relation */

cf(C,F) :-

F = 1.8*C + 32.

Sample Goals:

?- cf(100,A).

A=212.0

?- cf(A,B), A>100, B<200.

no.

?- cf(X,X).

X=-40.0

12

Formal De�nitions - CLP Constituents

A user de�ned constraint is of the form

p(t1; : : : tn where p is an n-ary predicate and

t1; : : : tn are expressions from the constraint do-

main.

A literal is either a primitive constraint or a

user-de�ned constraint.

A goal G is a sequence of literals. G has the

form L1; L2; : : : Lm where m � 0. If m = 0 the

goal is empty and is represented by 2

A rule R is of the form A : �B where A is a

user-de�ned constraint and B is a goal. A is

the head of the rule and B is the body. (Read

this as B implies A.)

A fact is a rule with the empty goal as the

body A : �2 and is just written as A: (Read

this as A is true.)

13

A constraint logic program P is a sequence of

rules.

The de�nition of a predicate p in a program P

is the sequence of rules appearing in P which

have a head involving predicate p. (More for-

mally \involving predicate p" means that the

head of those rules can be uni�ed with p, in

other words, we can solve a tree equality con-

straint between them.)

Evaluation in CLP Languages { Informal

Discussion

Given an initial goal, a CLP interpreter rewrites

any user-de�ned constraints in the goal using

their de�nitions.

This may yield more user de�ned constraints,

which are then rewritten.

Primitive constraints are kept in a constraint

store.

We continue until there are only primitive con-

straints, which are solved by the system.

However, if the constraint store contains an

unsatis�able set of constraints, we can stop

rewriting immediately.

We may have multiple rules for a given user-

de�ned constraint. We try these in order,

backtracking if one fails.

14

Rewriting { More Formal De�nition

Let a goal G be of the form

L1; : : : Li�1; Li; Li+1; : : : Lm

where Li is the user-de�ned constraint

p(t1; : : : ; tn) and rule R is of the form

p(s1; : : : ; sn) : �B.

A rewriting of G at Li by R using � is the goal

L1; : : : Li�1; t1 = �(s1); : : : ; tn = �(sn); �(B);

Li+1; : : : Lm

where � is a renaming such that the variables

in �(R) do not appear in G.

15

Example Rewriting

Consider the goal cf(100,A), B=A+100.

Let's rewrite this using the rule

cf(C,F) :-

F = 1.8*C + 32.

We can use the empty renaming, since there

are no variables in common between the goal

and the rule. The new goal is

100 = C;A = F; F = 1:8 �C+32; B = A+100

16

Mini-Exercise

Rewrite the goal cf(F,F) using the cf rule:

cf(C,F) :-

F = 1.8*C + 32.

17

Evaluation in CLP Languages { More For-

mal Treatment

The state of the computation at any point

consists of the current goal G and the con-

straint store C. Remember that G is a con-

junction of literals, and the constraint store

holds primitive constraints.

Formally, a state is a pair written hG j Ci.

A derivation step involves processing a con-

straint from G.

A derivation step is written as

hG1 j C1i) hG2 j C2i.

18

Evaluation (continued)

Suppose G1 = L1; : : : Lm for literals L1; : : : Lm.

Case 1. L1 is a primitive constraint. Then the

next state is hG2 j C2i, where C2 = C1 ^ L1.

If solv(C2) 6� false G2 = L2; : : : Lm.

If solv(C2) � false G2 = 2.

Case 2. L1 is a user de�ned constraint. Then

C2 = C1, and G2 is a rewriting of G1 at L1 by

some rule R in the program. If there is no rule

de�ning the predicate of L1 then C2 is false

and G2 is the empty goal.

19

Success and Failure

A success state is a state h2 j Ci where

solv(C) 6� false.

A fail state is a state h2 j Ci where solv(C) �

false.

A derivation hG0 j C0i) : : :) hGn j Cni is

successful if hGn j Cni is a success state.

The constraints resulting from simplifying Cn

with respect to the variables in the original goal

G0 are the answer to hG0 j C0i.

If hGn j Cni is a failed state then the derivation

is failed.

20

Answer to Example Rewriting

Earlier we rewrote the goal cf(100,A), B=A+100

using the rule

cf(C,F) :-

F = 1.8*C + 32.

The new goal is

100 = C;A = F; F = 1:8 �C+32; B = A+100

The answer is A= 212; B = 312

21

Example Derivation

CLP(R) program:

cf(C,F) :- /* rule R1 */

F = 1.8*C + 32.

double(X,Y) := Y=2*X. /* rule R2 */

Consider the goal cf(A,B), double(A,200).

hcf(A;B);double(A;200) j truei

)

using R1:

hA = C;B = F; F = 1:8 � C +32;

double(A;200) j truei

)

22

hB = F; F = 1:8 � C +32;double(A;200) j

A= Ci

)

hF = 1:8 � C +32;double(A;200) j A= C;

B = F i

)

hdouble(A;200) j A= C;B = F;

F = 1:8 � C +32i

)

using R2:

hA = X;200 = Y; Y = 2 �X j A = C;B = F;

F = 1:8 � C +32i

)

h200 = Y; Y = 2 �X j A= C;B = F;

F = 1:8 � C +32; A = Xi

)

hY = 2 �X j A = C;B = F; F = 1:8 � C +32;

A= X;200 = Y i,

)

h2 j A= C;B = F; F = 1:8 � C +32;

A= X;200 = Y; Y = 2 �Xi

Simplifying with respect to the variables in G0
(namely A;B) we get the answer A= 100; B =

212

In�nite Derivations

Consider the following rules de�ning the natu-

ral numbers:

natural(N) :- natural(N-1). /* Rule R1 */

natural(1). /* rule R2 */

Given the goal natural(3) one derivation is

hnatural(3) j truei

) (using R1)

hN = 3;natural(N � 1) j truei

)

hnatural(N � 1) j N = 3i

) (using R1)

23

hN � 1 = N 0;natural(N 0 � 1) j N = 3i

)

hnatural(N 0 � 1) j N = 3; N � 1 = N 0i

) (using R1)

hN 0 � 1 = N 00;natural(N 00 � 1) j

N = 3; N � 1 = N 0i

)

hnatural(N 00 � 1) j

N = 3; N � 1 = N 0; N 0 � 1 = N 00i

) (using R1)

hN 00 � 1 = N 000;natural(N 000 � 1) j

N = 3; N � 1 = N 0; N 0 � 1 = N 00; N 00 � 1 = N 000i

) . . .

A Di�erent Derivation

Another derivation for the goal natural(3) is

hnatural(3) j truei

) (using R1)

hN = 3;natural(N � 1) j truei

)

hnatural(N � 1) j N = 3i

) (using R1)

hN � 1 = N 0;natural(N 0 � 1) j N = 3i

)

hnatural(N 0 � 1) j N = 3; N � 1 = N 0i

24

) (using R2)

hN 0 � 1 = 1 j N = 3; N � 1 = N 0i

)

h2 j N = 3; N � 1 = N 0; N 0 � 1 = 1i

(a success state)

Choices in CLP(R)

1. When a goal contains more than one literal,

which literal to select?

2. When more than one rule matches the se-

lected literal, which rule to select?

Theorem: for a derivation that is successful,

choosing di�erent literals still gives the same

result. (Intuition: for a successful derivation

we have to process each literal sooner or later.)

Our CLP(R) implementation always selects

the leftmost literal.

25

The choice of rule is more interesting.

We can get di�erent answers for the same goal

given di�erent rule choices. (In other words,

there can be more than one successful deriva-

tion.)

Also some rule choices may result in in�nite

derivations | so it matters which order we try

them in.

De�nition: a derivation tree for a goal G and

program P is a tree with states as nodes. The

root of the tree is hG j truei. The children of

each state hGi j Cii are those states that can

be reached in a single derivation step.

A state with two or more children is a choice-

point. (This happens only for user-de�ned

constraints that have multiple matching rules.)

CLP(R) �rst selects the rule that occurs �rst

in the program text. If this derivation fails, it

selects the next rule, and so forth. To imple-

ment this it keeps a stack of backtrack points,

and uses depth-�rst search.

The order of rules in the program can make a

di�erence!

Mini-Exercises

Write CLP(R) rules to de�ne the \max" rela-

tion. Here are some sample goals:

?- max(10,20,X).

X=20

?- max(10,20,30).

no

What are the answers for the following goals?

If there is more than one answer give all of

them. Show the derivation tree (skipping some

details of processing the primitive constraints

if you wish).

?- max(1,2,A).

?- max(X,Y,20).

26

Tree Constraints

Besides the domain of the real numbers,

CLP(R) has another domain: trees. These al-

low us to model data structures such as lists,

records, and trees.

De�nitions: a tree constructor is a symbol be-

ginning with a lower-case letter. A tree is ei-

ther a constant, or a tree constructor together

with an ordered list of one or more trees, which

are its children.

A term is either a constant, a variable, or a

tree constructor together with an ordered list

of one or more trees, which are its children.

The only relation among trees we will use is

equality.

In CLP(R) atoms start with lower-case letters,

and variables with capital letters.

27

(Prolog fans: trees are the data structures that

Prolog uses. Uni�cation is the algorithm used

to solve equality constraints over trees.)

Examples of trees:

fred

X

point(10,20)

point(X,Y)

line(point(X1,Y1),point(X2,Y2))

node(3,emptynode,node(4,emptynode,emptynode))

There is special syntax for lists:

[] /* the empty list */

[1,2,3]

[1 | [2,3]] /* the same as [1,2, */

[a, b, [c], [d]] /* sublists OK */

Examples of tree constraints:

A = point(10,20)

has solution A=point(10,20)

point(X,X) = point(10,Y)

has solution X=Y=10

point(X,X) = point(10,20)

has no solution

[A,B,C] = [1,2,3]

has solution A=1, B=2, C=3

[X|Xs] = [1,2,3]

has solution X=1, Xs=[2,3]

[X|Xs] = [100]

has solution X=100, Xs=[]

Tree Constraint Solver

To solve e1 = e2

If e1 is a variable v, then succeed, and return

the substitution v = e2

If e2 is a variable v, then succeed, and return

the substitution v = e1

If e1 and e2 are constants, if they are the same

succeed; if they are di�erent fail.

If only one of e1 and e2 is a constant, fail.

Otherwise both e1 and e2 consist of a tree con-

structor with an ordered list of children. If

e1 and e2 have di�erent constructors or di�er-

ent numbers of children, then fail. Otherwise

e1 = p(s1; : : : ; sn) and e2 = p(t1; : : : ; tn). Recur-

sively solve the constraints s1 = t1; : : : sn = tn.

Succeed if all of them can be solved, and re-

turn the combined subsitution. Otherwise fail.

28

Some Simple Recursive CLP(R) Programs

/* LENGTH OF LIST */

length([],0).

length([H|T],N) :-

N > 0,

length(T,N-1).

/* compare this with a scheme program:

(define (length x)

(if (null? x) 0

(+ 1 (length (cdr x)))))

*/

/* SUM OF THE ELEMENTS IN A LIST */

sum([],0).

sum([X|Xs],X+S) :- sum(Xs,S).

29

/* FACTORIAL */

factorial(0, 1).

factorial(N, N * F) :-

N > 0 ,

fact(N - 1, F).

Mini-Exercises

What are the outputs for the following goals?

Show the derivation tree (skipping some details

of processing the primitive constraints if you

wish).

?- length([a,b,c],N).

?- length([X|Xs],N).

?- length(L,2).

30

Greatest Common Divisor

/* GREATEST COMMON DIVISOR

(USING EUCLID'S ALGORITHM) */

gcd(A,B,G) :-

A < B,

gcd(A,B-A,G).

gcd(A,B,G) :-

A > B,

gcd(A-B,B,G).

gcd(A,A,A).

31

Quicksort

quicksort([],[]).

quicksort([X|Xs],Sorted) :-

partition(X,Xs,Smalls,Bigs),

quicksort(Smalls,SortedSmalls),

quicksort(Bigs,SortedBigs),

append(SortedSmalls,[X|SortedBigs],Sorted).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X <= Pivot,

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

X > Pivot,

partition(Pivot,Xs,Ys,Zs).

append([],X,X).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

32

Electrical Circuit Example

resistor(lead(I1,V1),lead(I2,V2),Ohms) :-

I1+I2=0,

V2-V1=I1*Ohms.

battery(lead(I1,V1),lead(I2,V2),Volts) :-

V1 = V2+Volts,

I1+I2=0.

electrical_ground(lead(0,0)).

ammeter(lead(I1,V),lead(I2,V),I1) :-

I1+I2=0.

voltmeter(lead(0,V1),lead(0,V2),Volts) :-

V1-V2=Volts.

33

/* rule to connect a list of leads together

(makes all the voltages the same, and the

sum of the currents be 0 */

connect(Leads) :-

same_voltages(Leads),

currents_sum(Leads,0).

same_voltages([]).

same_voltages([L]).

same_voltages([lead(I1,V),lead(I2,V)|More]) :-

same_voltages([lead(I2,V)|More]).

currents_sum([],0).

currents_sum([lead(I1,V1)|More],I1+Sum) :-

currents_sum(More,Sum).

/* RULES TO BUILD THE SAMPLE CIRCUITS */

/* simple battery-resistor circuit */

one_resistor(Volts,Ohms,Amps) :-

battery(B1,B2,Volts),

resistor(R1,R2,Ohms),

ammeter(A1,A2,Amps),

electrical_ground(G),

connect([B2,A1]), connect([A2,R1]),

connect([R2,B1,G]).

/* same circuit, but no ground */

one_noground(Volts,Ohms,Amps) :-

battery(B1,B2,Volts),

resistor(R1,R2,Ohms),

ammeter(A1,A2,Amps),

connect([B2,A1]), connect([A2,R1]),

connect([R2,B1]).

/* voltage divider */

divider(Volts,Ohms1,Ohms2,Amps,VCenter) :-

battery(B1,B2,Volts),

resistor(R1,R2,Ohms1),

resistor(S1,S2,Ohms2),

ammeter(A1,A2,Amps),

voltmeter(V1,V2,VCenter),

electrical_ground(G),

connect([B2,A1]), connect([A2,R1]),

connect([R2,S1,V1]), connect([S2,V2,B1,G]).

divider_noground(Volts,Ohms1,Ohms2,Amps,VCenter) :-

battery(B1,B2,Volts),

resistor(R1,R2,Ohms1),

resistor(S1,S2,Ohms2),

ammeter(A1,A2,Amps),

voltmeter(V1,V2,VCenter),

connect([B2,A1]), connect([A2,R1]),

connect([R2,S1,V1]), connect([S2,V2,B1]).

/* Wheatstone bridge */

wheat(Volts,WOhms,XOhms,YOhms,ZOhms,Amps) :-

battery(B1,B2,Volts),

resistor(W1,W2,WOhms),

resistor(X1,X2,XOhms),

resistor(Y1,Y2,YOhms),

resistor(Z1,Z2,ZOhms),

ammeter(A1,A2,Amps),

electrical_ground(G),

connect([B2,W1,X1]), connect([B1,Y2,Z2,G]),

connect([W2,Y1,A1]), connect([X2,Z1,A2]).

wheat_noground(Volts,WOhms,XOhms,YOhms,ZOhms,Amps) :-

battery(B1,B2,Volts),

resistor(W1,W2,WOhms),

resistor(X1,X2,XOhms),

resistor(Y1,Y2,YOhms),

resistor(Z1,Z2,ZOhms),

ammeter(A1,A2,Amps),

connect([B2,W1,X1]), connect([B1,Y2,Z2]),

connect([W2,Y1,A1]), connect([X2,Z1,A2]).

ladder(T1,T2,Ohms,1) :-

/* one rung */

resistor(T1,A,Ohms),

resistor(T2,B,Ohms),

resistor(R1,R2,Ohms),

connect([A,R1]), connect([B,R2]).

ladder(T1,T2,Ohms,N) :-

N>1,

ladder(X1,X2,Ohms,N-1),

resistor(T1,A,Ohms),

resistor(T2,B,Ohms),

resistor(R1,R2,Ohms),

connect([A,R1,X1]), connect([B,R2,X2]).

/* SAMPLE GOALS */

go1 :- one_resistor(100,50,A), dump([A]).

go2 :- one_noground(100,50,A), dump([A]).

go3 :- divider(100,30,20,Amps,VCenter),

dump([Amps,VCenter]).

go4 :- divider_noground(100,30,20,Amps,VCenter),

dump([Amps,VCenter]).

go5(XOhms) :- wheat(100,100,XOhms,50,30,Amps),

dump([XOhms,Amps]).

go6(XOhms) :-

wheat_noground(100,100,XOhms,50,30,Amps),

dump([XOhms,Amps]).

go7(N) :-

ladder(T1,T2,10,N),

battery(B1,B2,100),

ammeter(A1,A2,Amps),

electrical_ground(G),

connect([B2,A1]), connect([A2,T1]),

connect([T2,B1,G]),

dump([Amps]).

CLP(R) Implementation

Constraint Logic Abstract Machine (CLAM)

| derived from Warren Abstract Machine

(WAM)

The Engine

The engine is a structure sharing Prolog inter-

preter (see Figure 2, page 360)

Distinguish between constraints that can be

handled in the engine (e.g. nonsolver variable

= number) and those that must be passed to

the interface.

Constraints that can be handled in the engine

are shown in �gure 3, page 361.

34

The Interface

Simplify input constraint by evaluating arith-

metic expressions. If constraint is ground, test

it.

If there is one non-solver variable, set up

a binding. Otherwise put constraint into a

canonical form and invoke solver.

Solver

solver modules:

� equality solver

� inequality solver

� nonlinear handler

35

Equality Solver

Equality solver uses variant of Gaussian elimi-

nation.

Represent nonparametric variables in terms of

parametric variables and constants. Central

data structure: a tableau (2d array). Each

row represents some nonparametric variable as

a linear combination of parametric variables.

Equality solver is invoked by the interface with

a new equality, from the inequality solver with

an implicit equality, or with a delayed con-

straint from the nonlinear handler.

36

Inequality Solver and Nonlinear Handler

Inequality Solver: adapted from �rst phase of

two-phase Simplex algorithm.

Simplex augmentations:

� unconstrainted variables and slack variables

� symbolic entries denoting in�nitesimal val-

ues

� negative or positive coe�cients for basic

unconstrained variables

Solver detects implicit equalities (could scrap

equality solver and just do it all with Simplex

...)

Nonlinear handler: delay nonlinear constraints

until they become linear

37

