1.1

LISP Characteristics

Programs consist of (recursive) functions
opposed to statements

Programs and data are in the form of symbolic
expressions called

S-expressions

There are no explicit type declarations or
storage models in pure LISP

LISP manipulates whole structures not just
“a-word-at-a-time”. This allows short, clear
programs

LISP programs can generate and execute new
LISP programs, dynamically

LISP comes from the lambda calculus; the
mathematical foundations promotes resoning
about programs.

1.2

LISP: A LITTLE HISTORY
22

* Developed by McCarthy in the late 1960s

* First functional language

* Motivated by artificial intelligence work and its
special need for symbolic processing

* Linked lists and associated operations

* Programs & data are syntactically the same
(S-expressions)

* Pure Lisp isn’t “practical”; impure Lisps are used
extensively in academia and industry

* There are many Lisp dialects, including Lisp 1.5,
MAC Lisp, Zeta-Lisp, Franz Lisp, UCI Lisp,
Interlisp, Scheme, etc.

* We use Common Lisp, a standard Lisp with several
implementations.

* Common Lisp has some significant differences from
other Lisps.

S-Expressions

S-expressions are atoms or lists.

Atoms can be

numbers: 6,-27, 89.523

or

symbols: A, B, C, smurf, T, NIL

A list is a (possibly empty) set of S-
expressions inside matching left or right
parentheses.

(ABC)

(THIS IS A SENTENCE)
(+(*23) (*5606))
(f X1 X2)

() or NIL

1.4

Relationship to Data Structures

The list
(st S S3 S)

is represented by the data structure

ELEHED - &

Note: the si’s are usually implemented as pointers

to atoms or to S-expressions.

7
T3 LA L]

Y A 4 A 4

1.5

DOTTED PAIRS

» Actually, the list is just a special case of
the more general structure: dotted pair.

* In “dotted pair notation™
An S-expression is
1) an atom
or 2) a dotted pair (si*s2) of

s-expressions s and s .

(A*B) A [B |

((A+B)+(C-D))

lalB| [clp]
(A+(B+(C+NIL))) [A] (B[4>icl/]

Corresponds to list (A B C)!

Any S-expression with dot-notation form
(si® (s22 (*** (sa* NIL)e*°**)))
has list-notation form

(s1 S eee S

Not all S-expressions have a list-notation form.

((asb)es(ce(d-e))

But they all have an internal representation.
car cdr

[afb] [e],

List notation is preferred, whenever possible.

1.6

The Lisp Interpreter

Lisp is an interactive system that responds to your
commands;

The prompt for Allegro Common Lisp for
Windows is >.

When you type in an expressions, it is read,
evaluated by the Lisp interpreter, and the result
is printed to the screen.

Examples:

> 185
185

> abc
Error: the variable ABC is unbound

> (setf abc 185)
185

> abc
185

Functional Forms

((<function> <arg:> <arg> ... <arg.>)
Lists represent function invocations.
The first element in the list is the function.

The remaining elements are its arguments.

Arguments are evaluated from left to right,
and then the function is applied.

>8 (+35)

> (*95(+33))
760

> (equal t nil)
NIL

> (setf alb3c2)
2

Elementary Functions

* Quote

Quote is a special function that does not
evaluate its argument.

(1+5) evaluates to 6
(Quote (1+ 5)) evaluatesto (1+ 5)
(Quote A) evaluates to A

(Quote Quote) evaluates to Quote

Quote is usually abbreviated by '.
'(1+ 5)

'A

'Quote

'(T AM A LIST)

(list al a2 cen an) constructs
and returns a list with elements

al, a2, ..., an, inthatorder.

(list ’a ’b ’c) produces (a b c)
(list >+ 8 9) produces (+ 8 9)

(list (list ’a ’b)(list ’c ’d)) produces ((a b)(c d))

Note: most Lisps, capitalize everything, so
(list ’a ’b ’c¢)=(list ’A ’B ’C)
and actually produces (ABC)!

CONS
Cons stands for construct.

It produces a new dotted pair or “cons cell”.

(consx y)

where
X 1s an S-expression
y is an S-expression

produces the dotted pair (x*y).

(cons ’a ’b) produces (A *B)
which has the data structure [ATB]

(cons x 1)

where
X 1S an S-expression
1 is a list

produces a new list with x as first element
followed by 1.

(cons ’a (list ’b ’c)) produces (ABC)

1.12

First (car)

First extracts the first element of a list

(first (list’a ’b ’c)) returns A
(first (list (list’a ’b) ’c)) returns (A B)

First is the modern ? name for the function car which
merely extracts and returns the car (first) field of any
dotted pair.

(car (cons ’a ’b)) returns A.

car cdr

(car (list 1 2 3)) returns 1

b [2] T LA

(car (car (list (list 2 3) 1))) returns?2

1.13

rest (cdr)

Rest extracts the remainder of the list, the part after
the first element.

(rest (list ’a ’b ’c)) returns (B C)
(rest (list (list a ’b ’c)) returns (C)

Rest is the modern name for the function cdr which
extracts the cdr (second) field of any dotted pair.

(cdr (cons ’a ’b)) returns B.
(cdr (list 1 2 3)) returns (23)
(cdr ’((ab)cde)) returns (CDE)

\ 4
(<]
A 4
[="
A 4
o

Suppose L isthelist (ABCD).
(cons ’A (cons’B (cons’C (cons’D NIL))))

L_’A

D

A 4

C

\ 4

B

\ 4

(car L)= A

(cdr L)= (B C D)

(car (cdr L))=B

(cdr (cdr L))= (CD)

(car (cdr (cdr L)))= C

(cdr (cdr (edr L)))= (D)

(car (cdr (cdr (¢dr L))))=D
(cdr (cdr (cdr (edr L))))= NIL

or

(rest (rest (rest (rest L))))= NIL

DEFINING FUNCTIONS

defun

The built-in function defun allows us to define
new functions.

(defun <name> <arglist> <body>)

defines a new function.

<name> is a symbol, naming it

<arglist> is a list of its formal
parameters

<body> is an expression representing
its body

(defun 2+ (x) (1+ (1+ x)))
(defun cadr (L) (car (cdr L)))

1.16

(defun myfun (xy)
(" (+x2)(+y3)))
(defun xor (conscell)

(not (equal (car conscell)
(cdr conscell))))

(defun push (xs)
(cons x s))

(defun pop (s)
(cdr s))

(defun exists(x) (not (null x)))

(defun le (ab) (not (>ab)))

MORE UTILITIES
cons constructs structures.
first and rest pull them apart.

Note: first and rest are nondestructive. They
merely return a structure that is a
piece of the original.

There are some more such functions.

second, third, etc. can pull out other specific
elements.

last returns a list consisting of the
last element in its argument list.
nthedr returns the list that would be

obtained by removing the first n
elements from the argument list.

butlast returns a list consisting of all but
the n last elements of the
argument list.

(second

(third

(last

(butlast

(butlast

(nthedr

(nthedr

(nthedr

'(12345))

'(12345))

'(12345))

'(12345))

'(12345) 2)

1°(12345))

2°(12345))

5°(12345))

1.18

return 2

return 3

returns (5)

returns (123 4)

returns (123)

returns (2345)

returns (345)

1.19

append

Append gives us another way of putting lists
together by appending one (or more) lists to the
end of the first one specified.

(append LIST1 LIST2 ... LISTn)

constructs and returns a new list containing
the elements of LIST1, followed by those
of LIST2, ..., up to LISTn.

(append *(AB) ’(CD)) returns (ABCD)

Which is more efficient?

-- consing a new element to the front of a
list or

-- appending a new element to the end?

10

