J.73
THE 1/0 PACKAGE

Javal/O isdefined in terms of streams.

Streams are ordered sequences of data that
have a source and a destination.

I/O isdefined in terms of classes and methods.

The most basic classes are:

* InputStream
* OutputStream

* RandomAccessFile

import java.io.*;
J.74
class Trandate {
public static void main(String[] args) {
InputStream in = System.in;
OutputStream out = System.out;

if (args.length = 2) error("must provide from/to arguments");
String from = argg[0], to = argg[1]; intch,i;

if (from.length() != to.length())
error("from and to must be the same length");

try {
while ((ch=in.read()) '=-1) {
if ((i = from.indexOf(ch)) !=-1)
out.write(to.charAt(i));
else out.write(ch);

}

} catch(IOException) {
error("1/O Exception: " + €);} }

public static void error(String err) {
System.err.print("Trandate: " + err);
System.exit(1); // Errorreturn } '} }

Java Trandate a z
| am adog.
| zm z dog.

J75
I/O Class Hierarchy

Object
FileDescriptor
File
StreamT okeni zer
OutputStream I nputSt@‘
RandomA ccessFile Sequencel nputStream

StringBufferlnputStream

ByteArrayOutputStream ByteArraylnputStream

PipedOutputStream
PipedinputStream

FileOutputStream
FilelnputStream

FilterOutputStream v
FilterlnputStream

PrintStream
LineNumberlnputStream
BufferedOutputStream
Bufferedl nputStream
ataOutputStream
Datal nputStream

PushbacklnputStream

J.76
EVENTS

If an applet isinteractive, it must be able
to receive and respond to user input:

* mouse clicks (down, up, click)

* mouse movements (position, drags)

 key presses (press, release, type)

* user interface events (buttons, menus, etc

» window events (open, close, exit)

Events are the devices provided by Java to
handle these things.

J.77

Java Event Models

® Unfortunately, there are now two event
models.

® The Java 1.0 model is simple and well-suited
to writing basic applets, but does not scale
well to complicated interfaces.

® The Java 1.1 model solves many of the
shortcomings of the 1.0 model, but is not yet
supported by many browsers.

® We suggest you stick to 1.0 at thistime, but
those who are adventurous may want to try 1.1.

J.78
The Java 1.0 Event Model

® All events are represented by the Event class,
which has instance variables that describe the
event:

*id: the type of event
» Event: possible values of id
s target: object generating the Event

» other fields for specific types of Events

® Java 1.0 events are dispatched first to the
handleEvent() method of the Component
object on which they occur.

® The event methods return boolean values$

true if the event has been handled, else fals

D

1.0 EXAMPLE

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Event;
import java.awt.Point;

public class Lines extends java.applet.Applet {

final int MAXLINES = 20;

Point starts[] = new Pointf MAXLINES];
Point ends[] = new Pointf MAXLINES];
Point anchor;

Point currentpoint;

int currline=0;

public void init() {
setBackground(Color.white);
}

public boolean mouseDown(Event evt, int X, int y) {

if (currline< MAXLINES) {
anchor = new Point(x,y);
return true;
}
else{
System.out.printin(*Too many lines.");
return false;

}

J.79

J.80

public boolean mouseUp(Event evt, int X, int y) {

if (currline< MAXLINES) {
addline(x,y);
return true;
}

else return false;

}

public boolean mouseDrag(Event evt, int X, int y) {

if (currline< MAXLINES) {
currentpoint = new Point(x,y);
repaint();
return true;

}

elsereturn fase

}

void addline(int x, int y) {
startg currline] = anchor;
endgcurrline] = new Point(x,y);
currline++;
currentpoint = null;
anchor = null;
repaint();

J.8l

public void paint(Graphics g) {

}

/* Draw existing lines */
for (inti =0;i <currling; i++) {

g.drawLine(startg[i].x, startg[i].y, endd[i].x, ends[i].y);
}

/* Draw the current line */
g.setColor(Color.blue);
if (currentpoint != null)

g.drawLine(anchor.x, anchor.y, currentpoint.x, currentpoint.y);

}

J.82

The Java l.1 Event Mode

® The Java 1.1 event model is used by
both AWT and Java Beans.

¢ Different classes of events are represented
by different Java classes.

® Every event is a subclass of
javauutil.EventObject.

®* AWT events are subclasses of
java.awt. AWTEvent.

® Every event has a source object, which
can be obtained with getSource().

®* Every AWT event has atype value, which
can be obtained with getID() and which
distinguishes the types of eventsin one class.

J.83

Event Listener

® An object interested in receiving events
isan event listener.

® An object that generates eventsis an
event source.

® An event source maintains alist of
listeners who want to be notified when
the event occurs.

® When auser input event occurs on the
event source, it notifies all the listeners.

J.84
1.1 Example

import java.awt.Graphics;
import java.awt.Color;
import java.awt.event.*;
import java.awt.Point;

public class LinesNew extends java.applet.Applet
implements MouseL istener,MouseM otionListener {

final int MAXLINES = 20;

Point starts[] = new PointfMAXLINES];
Point ends[] = new PointfMAXLINES];
Point anchor;

Point currentpoint;

int currline=0;

public void init() {
setBackground(Color.white);

[* Register event Listeners*/

addMouseL istener(this);
addMouseMotionL.istener(this);

}

[* Signatures Needed for Listener Interfaces*/

public void mouseM oved(MouseEvent €) {}
public void mouseClicked(MouseEvent €) {}
public void mouseEntered(MouseEvent €) {}
public void mouseExited(MouseEvent €) {}

/* Replaces mouseDown */
public void mousePressed(MouseEvent €) {

if (currline< MAXLINES)

anchor = new Point(e.getX(),e.getY ());
else

System.out.printIn(* Too many lines.");

}
[* Replaces mouseUp */
public void mouseRel eased(M ouseEvent €) {

if (currline< MAXLINES)
addline(e.getX(),e.getY ());
}

J.85

J.86

/* Replaces mouseDrag */
public void mouseDragged(MouseEvent €) {

if (currline< MAXLINES) {
currentpoint = new Point(e.getX(),e.getY ());
repaint();
}
}

void addline(int x, int y) {
startg currling] = anchor;
endgcurrline] = new Point(x,y);
currline++;
currentpoint = null;
anchor = null;
repaint();

J.87

J.88

public void paint(Graphics g) {
/* Draw existing lines */
for (inti =0; i <currling; i++) {
} g.drawLine(startg[i].x, startg[i].y, endg[i].x, ends]i].y);
/* Draw the current line */
g.setColor(Color.blue);
if (currentpoint != null)

g.drawLine(anchor.x, anchor.y, currentpoint.x,
currentpoint.y);

