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J.73
THE  I/O  PACKAGE

Java I/O is defined in terms of  streams.

Streams are ordered sequences of data that
have a  source  and  a  destination.

I/O is defined in terms of classes and methods.

The most basic classes are:

• InputStream

• OutputStream

• RandomAccessFile
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import java.io.*;

class Translate {
   public static void main(String[] args) {
   InputStream in = System.in;
   OutputStream out = System.out;

  if (args.length != 2) error("must provide from/to arguments");

   String from = args[0], to = args[1];    int ch, i;

   if (from.length() != to.length())
      error("from and to must be the same length");

      try {
          while ((ch = in.read()) != -1) {
             if   ((i = from.indexOf(ch)) != -1)
                 out.write(to.charAt(i));
             else  out.write(ch);

          }
      }  catch(IOException e) {
            error("I/O Exception: " + e); }  }

public static void error(String err) {
       System.err.print("Translate: " + err);
       System.exit(1);  // Error return  }   }   }

Java  Translate  a  z
I am a dog.
I zm z dog.
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I/O  Class  Hierarchy
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EVENTS

If an applet is interactive, it must be able
to receive and respond to user input:

• mouse clicks (down, up, click)

• mouse movements (position, drags)

• key presses (press, release, type)

• user interface events (buttons, menus, etc.)

• window events (open, close, exit)

Events are the devices provided by Java to
handle these things.
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Java Event Models

iUnfortunately, there are now  two  event
models.

i The Java 1.0 model is simple and well-suited
to writing basic applets, but does not scale
well to complicated interfaces.

i The Java 1.1 model solves many of the
shortcomings of the 1.0 model, but is not yet
supported by many browsers.

i We suggest you stick to 1.0 at this time, but
those who are adventurous may want to try 1.1.
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The Java 1.0 Event Model

i All events are represented by the Event class,
which has instance variables that describe the
event:

• id:          the type of event
• Event:    possible values of id
• target:     object generating the Event

• other fields for specific types of Events

iJava 1.0 events are dispatched first to the
handleEvent() method of the  Component 
object on which they occur.

i The event methods return boolean values:
true if the event has been handled, else false.
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  import java.awt.Graphics;
   import java.awt.Color;
   import java.awt.Event;
   import java.awt.Point;

   public class Lines extends java.applet.Applet {
  
   final int MAXLINES = 20;
   Point starts[] = new Point[MAXLINES];
   Point ends[] = new Point[MAXLINES];
   Point anchor;
   Point currentpoint;
   int currline = 0;

   public void init() {
      setBackground(Color.white);
   }

   public boolean mouseDown(Event evt, int x, int y) {

      if (currline < MAXLINES) {
           anchor = new Point(x,y);
           return true;
           }
      else {
           System.out.println("Too many lines.");
           return false;
           }
   }

1.0 EXAMPLE J.80

 public boolean mouseUp(Event evt, int x, int y) {

   if (currline < MAXLINES) {
           addline(x,y);
           return true;
           }
           else return false;
   }

   public boolean mouseDrag(Event evt, int x, int y) {

      if (currline < MAXLINES) {
           currentpoint = new Point(x,y);
           repaint();
           return true;
           }
           else return false;
   }

   void addline(int x, int y) {
      starts[currline] = anchor;
      ends[currline] = new Point(x,y);
      currline++;
      currentpoint = null;
      anchor = null;
      repaint();
   }
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public void paint(Graphics g) {

   /* Draw existing lines */

   for (int i = 0; i < currline; i++) {
      g.drawLine(starts[i].x, starts[i].y, ends[i].x, ends[i].y);
   }

   /* Draw the current line */

   g.setColor(Color.blue);

   if (currentpoint != null)
      g.drawLine(anchor.x, anchor.y, currentpoint.x, currentpoint.y);
   }

}
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The Java 1.1 Event Model

iThe Java 1.1 event model is used by 
    both AWT and Java Beans.

i Different classes of events are represented
    by different Java classes.

i Every event is a subclass of  
     java.util.EventObject.

i AWT events are subclasses of
     java.awt.AWTEvent.

i Every event has a source object, which
    can be obtained with getSource().

i Every AWT event has a type value, which
    can be obtained with getID() and which
    distinguishes the types of events in one class.
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Event  Listener

iAn object interested in receiving events
    is an event listener.

i An object that generates events is an
    event source.

i An event source maintains a list of
    listeners who want to be notified when
    the event occurs.

i When a user input event occurs on the
     event source, it notifies all the listeners.
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   import java.awt.Graphics;
   import java.awt.Color;
   import java.awt.event.*;
   import java.awt.Point;

   public class LinesNew extends java.applet.Applet 
      implements MouseListener,MouseMotionListener {
  
   final int MAXLINES = 20;
   Point starts[] = new Point[MAXLINES];
   Point ends[] = new Point[MAXLINES];
   Point anchor;
   Point currentpoint;
   int currline = 0;

   public void init() {
      setBackground(Color.white);

   /* Register event Listeners */

   addMouseListener(this);
   addMouseMotionListener(this);
   }

1.1 Example
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/* Signatures Needed for Listener Interfaces */

   public void mouseMoved(MouseEvent e) {}
   public void mouseClicked(MouseEvent e) {}
   public void mouseEntered(MouseEvent e) {}
   public void mouseExited(MouseEvent e) {}

   /* Replaces mouseDown */

   public void mousePressed(MouseEvent e) {

      if (currline < MAXLINES) 
           anchor = new Point(e.getX(),e.getY());
      else 
           System.out.println("Too many lines.");
   }

   /* Replaces mouseUp */

   public void mouseReleased(MouseEvent e) {

   if (currline < MAXLINES) 
           addline(e.getX(),e.getY());
   }
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 /* Replaces mouseDrag */

   public void mouseDragged(MouseEvent e) {

      if (currline < MAXLINES) {
           currentpoint = new Point(e.getX(),e.getY());
           repaint();
           }
   }

   void addline(int x, int y) {
      starts[currline] = anchor;
      ends[currline] = new Point(x,y);
      currline++;
      currentpoint = null;
      anchor = null;
      repaint();
   }
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public void paint(Graphics g) {

   /* Draw existing lines */

   for (int i = 0; i < currline; i++) {
      g.drawLine(starts[i].x, starts[i].y, ends[i].x, ends[i].y);
   }

   /* Draw the current line */

   g.setColor(Color.blue);

   if (currentpoint != null)
      g.drawLine(anchor.x, anchor.y, currentpoint.x, 
                         currentpoint.y);
   }

}
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