
1

J.73
THE I/O PACKAGE

Java I/O is defined in terms of streams.

Streams are ordered sequences of data that
have a source and a destination.

I/O is defined in terms of classes and methods.

The most basic classes are:

• InputStream

• OutputStream

• RandomAccessFile

J.74
import java.io.*;

class Translate {
 public static void main(String[] args) {
 InputStream in = System.in;
 OutputStream out = System.out;

 if (args.length != 2) error("must provide from/to arguments");

 String from = args[0], to = args[1]; int ch, i;

 if (from.length() != to.length())
 error("from and to must be the same length");

 try {
 while ((ch = in.read()) != -1) {
 if ((i = from.indexOf(ch)) != -1)
 out.write(to.charAt(i));
 else out.write(ch);

 }
 } catch(IOException e) {
 error("I/O Exception: " + e); } }

public static void error(String err) {
 System.err.print("Translate: " + err);
 System.exit(1); // Error return } } }

Java Translate a z
I am a dog.
I zm z dog.

2

J.75

I/O Class Hierarchy

Object

File

OutputStream

RandomAccessFile

InputStream

FileDescriptor

StreamTokenizer

ByteArrayOutputStream

PipedOutputStream

FileOutputStream

FilterOutputStream

PrintStream

BufferedOutputStream

DataOutputStream

SequenceInputStream

StringBufferInputStream

ByteArrayInputStream

PipedInputStream

FileInputStream

FilterInputStream

LineNumberInputStream

BufferedInputStream

DataInputStream

PushbackInputStream

J.76

EVENTS

If an applet is interactive, it must be able
to receive and respond to user input:

• mouse clicks (down, up, click)

• mouse movements (position, drags)

• key presses (press, release, type)

• user interface events (buttons, menus, etc.)

• window events (open, close, exit)

Events are the devices provided by Java to
handle these things.

3

J.77

Java Event Models

iUnfortunately, there are now two event
models.

i The Java 1.0 model is simple and well-suited
to writing basic applets, but does not scale
well to complicated interfaces.

i The Java 1.1 model solves many of the
shortcomings of the 1.0 model, but is not yet
supported by many browsers.

i We suggest you stick to 1.0 at this time, but
those who are adventurous may want to try 1.1.

J.78

The Java 1.0 Event Model

i All events are represented by the Event class,
which has instance variables that describe the
event:

• id: the type of event
• Event: possible values of id
• target: object generating the Event

• other fields for specific types of Events

iJava 1.0 events are dispatched first to the
handleEvent() method of the Component
object on which they occur.

i The event methods return boolean values:
true if the event has been handled, else false.

4

J.79

 import java.awt.Graphics;
 import java.awt.Color;
 import java.awt.Event;
 import java.awt.Point;

 public class Lines extends java.applet.Applet {

 final int MAXLINES = 20;
 Point starts[] = new Point[MAXLINES];
 Point ends[] = new Point[MAXLINES];
 Point anchor;
 Point currentpoint;
 int currline = 0;

 public void init() {
 setBackground(Color.white);
 }

 public boolean mouseDown(Event evt, int x, int y) {

 if (currline < MAXLINES) {
 anchor = new Point(x,y);
 return true;
 }
 else {
 System.out.println("Too many lines.");
 return false;
 }
 }

1.0 EXAMPLE J.80

 public boolean mouseUp(Event evt, int x, int y) {

 if (currline < MAXLINES) {
 addline(x,y);
 return true;
 }
 else return false;
 }

 public boolean mouseDrag(Event evt, int x, int y) {

 if (currline < MAXLINES) {
 currentpoint = new Point(x,y);
 repaint();
 return true;
 }
 else return false;
 }

 void addline(int x, int y) {
 starts[currline] = anchor;
 ends[currline] = new Point(x,y);
 currline++;
 currentpoint = null;
 anchor = null;
 repaint();
 }

5

J.81

public void paint(Graphics g) {

 /* Draw existing lines */

 for (int i = 0; i < currline; i++) {
 g.drawLine(starts[i].x, starts[i].y, ends[i].x, ends[i].y);
 }

 /* Draw the current line */

 g.setColor(Color.blue);

 if (currentpoint != null)
 g.drawLine(anchor.x, anchor.y, currentpoint.x, currentpoint.y);
 }

}

J.82

The Java 1.1 Event Model

iThe Java 1.1 event model is used by
 both AWT and Java Beans.

i Different classes of events are represented
 by different Java classes.

i Every event is a subclass of
 java.util.EventObject.

i AWT events are subclasses of
 java.awt.AWTEvent.

i Every event has a source object, which
 can be obtained with getSource().

i Every AWT event has a type value, which
 can be obtained with getID() and which
 distinguishes the types of events in one class.

6

J.83

Event Listener

iAn object interested in receiving events
 is an event listener.

i An object that generates events is an
 event source.

i An event source maintains a list of
 listeners who want to be notified when
 the event occurs.

i When a user input event occurs on the
 event source, it notifies all the listeners.

J.84

 import java.awt.Graphics;
 import java.awt.Color;
 import java.awt.event.*;
 import java.awt.Point;

 public class LinesNew extends java.applet.Applet
 implements MouseListener,MouseMotionListener {

 final int MAXLINES = 20;
 Point starts[] = new Point[MAXLINES];
 Point ends[] = new Point[MAXLINES];
 Point anchor;
 Point currentpoint;
 int currline = 0;

 public void init() {
 setBackground(Color.white);

 /* Register event Listeners */

 addMouseListener(this);
 addMouseMotionListener(this);
 }

1.1 Example

7

J.85

/* Signatures Needed for Listener Interfaces */

 public void mouseMoved(MouseEvent e) {}
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}

 /* Replaces mouseDown */

 public void mousePressed(MouseEvent e) {

 if (currline < MAXLINES)
 anchor = new Point(e.getX(),e.getY());
 else
 System.out.println("Too many lines.");
 }

 /* Replaces mouseUp */

 public void mouseReleased(MouseEvent e) {

 if (currline < MAXLINES)
 addline(e.getX(),e.getY());
 }

J.86

 /* Replaces mouseDrag */

 public void mouseDragged(MouseEvent e) {

 if (currline < MAXLINES) {
 currentpoint = new Point(e.getX(),e.getY());
 repaint();
 }
 }

 void addline(int x, int y) {
 starts[currline] = anchor;
 ends[currline] = new Point(x,y);
 currline++;
 currentpoint = null;
 anchor = null;
 repaint();
 }

8

J.87

public void paint(Graphics g) {

 /* Draw existing lines */

 for (int i = 0; i < currline; i++) {
 g.drawLine(starts[i].x, starts[i].y, ends[i].x, ends[i].y);
 }

 /* Draw the current line */

 g.setColor(Color.blue);

 if (currentpoint != null)
 g.drawLine(anchor.x, anchor.y, currentpoint.x,
 currentpoint.y);
 }

}

J.88

