
1

J.55

THREADS

Most programming languages are designed
for single processor, sequential execution.

In Java, this corresponds to a single thread.

But Java can also handle multiple threads
executing concurrently (sharing the processor).

J.56

iYou create a Thread using new

 Thread myThread = new Thread();

i After creation, you can configure it using
methods such as

 setName(String name)
 setPriority(int Priority)

i To run it, you invoke its start method,
which spawns a new thread based on the
data in the Thread object.

i Once it is started, the Java virtual machine
invokes its run method, which you write.

i A Thread can be explicitly stopped with
its stop method.

2

J.57

class PingPong extends Thread {
 String word;
 int delay;

 PingPong(String whatToSay, int delayTime) {
 word = whatToSay;
 delay = delayTime;
 }

 public void run() {
 try {
 for (;;) {
 System.out.print(word + " ");
 sleep(delay); // sleep CAN throw an exception
 }
 } catch (InterruptedException e) {
 return;
 }
 }
 public static void main(String[] args) {
 new PingPong("ping", 33).start(); // 1/30 sec
 new PingPong("PONG", 100).start(); // 1/10 sec
 new PingPong("slam", 200).start(); // 2/10 sec
 }}

ping PONG slam ping ping ping PONG ping ping
ping PONG slam ping ping ping PONG ping ping
ping PONG slam . . .

Example: J.58
Things you can do with Threads

1. Create them, run them, stop them.

2. Assign them priorities for preference
 in running.

3. Suspend them and resume them.

4. Use them to execute synchronized
 methods or synchronized blocks
 of code for working with shared
 data.

5. Use the explicit methods wait
 and notify to have some threads
 wait for results to be produced by
 others.

3

J.59
RUNNABLES

iThe Runnable interface abstracts the
concept of something that will execute code
while it is active.

i The Runnable interface declares a single
method:

 public abstract void run()

i The Thread class implements the Runnable
interface, but it has a lot of extra overhead,
so it is often easier to just implement Runnable
directly.

i If an object implementing Runnable is used
to create a thread, then starting the thread will
lead to the invocation of the object’s run
method in that separately executing thread.

J.60

import java.awt.Graphics;
import java.awt.Color;

public class check3 extends java.applet.Applet
 implements Runnable {

 /* This applet uses the concept of a thread to enable
 animation on its own without interfering with other
 system operations.

 It can be started and stopped and can run in parallel
 with other applets. */

 Thread runner;
 int xpos;

EXAMPLE: Graphics / Animation

4

J.61

 /* The start method creates a new thread and starts
 it running */

 public void start() {
 if (runner == null) {
 runner = new Thread(this);
 runner.start();
 }
 }

 /* The stop method suspends the execution of the
 thread when the reader leaves the page. */

 public void stop() {
 if (runner != null) {
 runner.stop();
 runner = null;
 }
 }

J.62

 /* The run method changes the value of xpos AND
 repaints the screen after a pause of 100 milliseconds */

 public void run() {

 /* Moving xpos from left to right */

 while (true) {
 for (xpos = 5; xpos <=105; xpos +=4)
 {
 repaint();
 try {Thread.sleep(100); }
 catch (InterruptedException e) {}
 }
 /* Moving xpos from right to left */

 for (xpos = 105; xpos > 5; xpos -=4)
 {
 repaint();
 try {Thread.sleep(100); }
 catch (InterruptedException e) {}
 }
 }
 }

Why does run have to go to sleep ?

5

J.63

 /* The paint method specifies what to draw
 on the screen */

 public void paint(Graphics g) {

 /* Draw board squares */

 g.setColor(Color.yellow);
 g.fillRect(0,0,100,100);
 g.setColor(Color.black);
 g.fillRect(100,0,100,100);

 /* Draw checker */

 g.setColor(Color.red);
 g.fillOval(xpos,5,90,90);

 }
 }

J.64

This will have some flicker. There are methods
for dealing with it such as

 1. Repainting only the changed part of the
 screen.

 2. Double buffering

6

/*
TITLE: MOREMAN.JAVA
AUTHOR: LINDA SHAPIRO
DATE: NOVEMBER 17, 1997
PURPOSE: TO DEMONSTRATE THE USE OF SINE
 AND COSINE IN AN ANIMATION
*/

import java.awt.Graphics;
import java.awt.Color;

public class moreman extends java.applet.Applet
 implements Runnable {

 Thread runner;
 int xpos,ypos,ypos2;
 double dx, dy, dy2;

Making the figure and motion more complex

J.65 J.66
/* CODE TO CONTROL THE MOVEMENTS */

 public void run() {
 setBackground(Color.cyan);
 while (true) {

 /* FORWARD LOOP. */

 for (xpos = 5; xpos <=405; xpos +=4) {
 dx = (double) (xpos * .0078);
 dy = Math.sin(dx)/ .0078;
 ypos = (int) dy;
 dy2 = Math.cos(dx)/ .0078;
 ypos2 = (int) Math.abs(dy2);
 repaint();
 try {Thread.sleep(100); }
 catch (InterruptedException e) {}
 }
 /* REVERSE LOOP. */

 for (xpos = 405; xpos > 5; xpos -=4) {
 dx = (double) (xpos * .0078);
 dy = Math.sin(dx)/ .0078;
 ypos = (int) dy;
 dy2 = Math.cos(dx)/ .0078;
 ypos2 = (int) Math.abs(dy2);
 repaint();
 try {Thread.sleep(100); }
 catch (InterruptedException e) {}
 }}}

7

J.67

 public void paint(Graphics g) {

 /* THIS MAN USES THE SINE FUNCTION */

 g.setColor(Color.red);
 g.fillOval(xpos+23,ypos+5,45,45);
 g.setColor(Color.blue);
 g.fillRect(xpos+23,ypos+50,45,45);
 g.setColor(Color.yellow);
 g.fillRect(xpos+2,ypos+50,21,21);
 g.fillRect(xpos+68,ypos+50,21,21);

 /* THIS MAN USES THE COSINE FUNCTION */

 g.setColor(Color.magenta);
 g.fillOval(xpos+23,ypos2+5,45,45);
 g.setColor(Color.black);
 g.fillRect(xpos+23,ypos2+50,45,45);
 g.setColor(Color.pink);
 g.fillRect(xpos+2,ypos2+50,21,21);
 g.fillRect(xpos+68,ypos2+50,21,21);

 }
 }

J.68

8

J.69

import java.awt.Graphics;
 import java.awt.Image;
 import java.awt.Color;

 public class MoveDog extends java.applet.Applet
 implements Runnable {

 Image dogpics[] = new Image[4];
 Image currentimg;
 Thread runner;
 int xpos;
 int ypos = 50;

 public void init() {

 String dogsrc[] = {"right1.gif", "right2.gif", "stop.gif",
 "yawn.gif"};

 for (int i=0; i < dogpics.length; i++) {
 dogpics[i] = getImage(getCodeBase(),"images/" +
 dogsrc[i]);

 }
 }

The Moving Dog Image Example
J.70

 public void run() {

 setBackground(Color.white);
 while (true) {

 /* run from one side of the screen to the middle */
 dogrun(0, this.size().width / 2);

 /* stop and pause */
 currentimg = dogpics[2];
 repaint();
 pause(1000);

 /* yawn */
 currentimg = dogpics[3];
 repaint();
 pause(1000);

 /* go back to plain old stop */
 currentimg = dogpics[2];
 repaint();
 pause(1000);

 /* wake up and run off */

 dogrun(xpos, this.size().width + 10); } }

9

J.71

 void dogrun(int start, int end) {
 for (int i = start; i < end; i+=10) {
 this.xpos = i;

 /* swap images */

 if (currentimg == dogpics[0]) currentimg = dogpics[1];
 else currentimg = dogpics[0];

 repaint();
 pause(150);
 }
 }

 void pause(int time) {
 try { Thread.sleep(time); }
 catch (InterruptedException e) { }
 }

 public void paint(Graphics g) {
 g.drawImage(currentimg, xpos, ypos, this);
 }
 }

J.72

