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ARRAYS

iA Java  array  is an Object that holds
 an ordered collection of elements.

i Components of an array can be primitive
types or may reference objects, including
other arrays.

i Arrays can be declared, allocated, and / or
initialized all in one compact statement.

int[] ai;

int[] ia = new int[3];

char ac[] = {’n’, ’o’, ’t’};

The length of an array is fixed at creation
and cannot be changed, but a new, longer
array instance can be assigned to the Object.
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The length field of an array object makes
the length of the array available.

Java supports arrays of arrays, rather than
2D or  multi-dimensional arrays.

Example:
public class myArray {
public static void main (String[] args) {

double[] [] mat = {{1., 2., 3., 4.}, {5., 6., 7., 8.}, 
                  {9., 10., 11., 12.}, {13., 14., 15., 16.}};

for (int y = 0; y < mat.length; y++) {
   for (int x = 0; x < mat[y].length; x++)
      System.out.print(mat[y][x] + " ");
   System.out.println();
}}}

What does it print?  

Is the array stored in row-major or column-major
order?
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STRINGS

iThe  String  class provides read-only strings
and supports operations on them

i A  String can be created implicitly either by
using a quoted string (e.g. "grass") or by
the concatenation of two String objects,
using the + operator.

i A String can also be created using new 
and a String constructor.

String  aString = new String();

String bString = new String("grass”);
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String  Methods

ilength()  returns the number of characters

i charAt(i)  returns the character at position i.

for (int i = 0; i < str.length(); i++)
   System.out.println(charAt(i));

i indexOf(char ch) returns the first position
   of character ch in a String.

i lastIndexOf(char ch) returns the last position
   of character ch in a String.
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String  Comparisons

iThe method  equals  returns true if it is
passed a reference to a String object with the
same contents as a given String.

iThe method equalsIgnoreCase works like
equals, but ignores upper/lower case distinctions.

i The method compareTo returns an int that is
less than, equal to, or greater than zero for
comparisons and sorting.

Example:  Part of a Binary Search

while (lo <= hi) {
   int mid = lo + (hi - lo) / 2;
   int cmp = key.compareTo(table[mid]);
   if (cmp == 0)   return mid;
   else if (cmp < 0)   hi = mid - 1;
   else lo = mid + 1;
}
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Since you cannot modify existing strings,
there are methods to create new strings from
existing ones.

i public String substring(int beginIndex,
                                       int endIndex)

i public String replace(char oldChar,
                                   char newChar)

i public String concat(String str)

i public String toLowerCase()

i public String toUpperCase()

i public String trim()
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EXCEPTIONS

iAn  exception  is a condition that arises
during execution.

i An exception is  thrown  when an error
condition is encountered.

i It is then  caught  by code that receives it
and deals with it.

i Java exceptions are objects that extend the
class  Throwable  or one of its subclasses,
usually the subclass  Exception.

i Class Throwable and its subclasses have
two constructors, one with no arguments
and one with a String argument for an
error message.
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Defining  Exceptions

Programmers can define their own exception
types and write code to throw them and catch
them.

Example with Attributes and Values:

public class NoSuchAttributeException extends Exception
{
   public String attrName;
   public Object newValue;

   NoSuchAttributeException(String name, Object value) {
      super("No attribute named  \"" + name + "\" found");
      attrName = name;
      newValue = value;
   }
}
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Throwing Exceptions

Methods  that will check for errors and
throw exceptions use

ithe throws clause to tell the compiler
what kind of exceptions they may throw

i the throw statement to perform the throwing

Example:

public void replaceValue(String name, Object newValue)
   throws NoSuchAttributeException
{
   Attr attr = find(name);
   if (attr == null)
      throw new NoSuchAttributeException(name newValue);
   attr.valueOf(newValue);
}
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If your method invokes a method that lists
a checked exception it its throwable clause,
it can do one of three things

iCatch the exception and handle it.

i Catch the exception and map it into one of your 
own exceptions by throwing an exception of
a type declared in your own throws clause

i Declare the exception in your throws clause and
let it pass through your method, possibly adding
a finally clause that cleans up first.
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Catching Exceptions

Syntax:

try   <block>
catch (<exception_type>   <identifier>)
       <block>
catch(<exception_type>  <identifier>)
      <block> 
   . . . 
finally  <block>

Example:

try{
   attributedObj.replaceValue(“Age”, new Integer(8));
     }
catch(NoSuchAttributeException e) {

   Attr attr = new Attr(e.attrName,  e.newValue);
   attributedObj.add(attr);
}
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Finally

iThe  finally  clause of a try statement 
provides a mechanism for executing a
section of code whether or not an exception 
is thrown.

iThis example closes a file when its work is
done, even if an error occurs:

public boolean searchFor(String file, String word)
     throws StreamException
{
   Stream input = null;
   try {
         input = new Stream(file);*
         while (!input.eof())
            if (input.next() == word)  return* true;
         return* false; }
   *finally {
               if (input != null) input.close();
               }
}

* This can fail.      * Finally is executed before any return.


