
J.43
ARRAYS

iA Java array is an Object that holds
 an ordered collection of elements.

i Components of an array can be primitive
types or may reference objects, including
other arrays.

i Arrays can be declared, allocated, and / or
initialized all in one compact statement.

int[] ai;

int[] ia = new int[3];

char ac[] = {’n’, ’o’, ’t’};

The length of an array is fixed at creation
and cannot be changed, but a new, longer
array instance can be assigned to the Object.

J.44
The length field of an array object makes
the length of the array available.

Java supports arrays of arrays, rather than
2D or multi-dimensional arrays.

Example:
public class myArray {
public static void main (String[] args) {

double[] [] mat = {{1., 2., 3., 4.}, {5., 6., 7., 8.},
 {9., 10., 11., 12.}, {13., 14., 15., 16.}};

for (int y = 0; y < mat.length; y++) {
 for (int x = 0; x < mat[y].length; x++)
 System.out.print(mat[y][x] + " ");
 System.out.println();
}}}

What does it print?

Is the array stored in row-major or column-major
order?

J.45

STRINGS

iThe String class provides read-only strings
and supports operations on them

i A String can be created implicitly either by
using a quoted string (e.g. "grass") or by
the concatenation of two String objects,
using the + operator.

i A String can also be created using new
and a String constructor.

String aString = new String();

String bString = new String("grass”);

J.46

String Methods

ilength() returns the number of characters

i charAt(i) returns the character at position i.

for (int i = 0; i < str.length(); i++)
 System.out.println(charAt(i));

i indexOf(char ch) returns the first position
 of character ch in a String.

i lastIndexOf(char ch) returns the last position
 of character ch in a String.

J.47

String Comparisons

iThe method equals returns true if it is
passed a reference to a String object with the
same contents as a given String.

iThe method equalsIgnoreCase works like
equals, but ignores upper/lower case distinctions.

i The method compareTo returns an int that is
less than, equal to, or greater than zero for
comparisons and sorting.

Example: Part of a Binary Search

while (lo <= hi) {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(table[mid]);
 if (cmp == 0) return mid;
 else if (cmp < 0) hi = mid - 1;
 else lo = mid + 1;
}

J.48

Since you cannot modify existing strings,
there are methods to create new strings from
existing ones.

i public String substring(int beginIndex,
 int endIndex)

i public String replace(char oldChar,
 char newChar)

i public String concat(String str)

i public String toLowerCase()

i public String toUpperCase()

i public String trim()

J.49

EXCEPTIONS

iAn exception is a condition that arises
during execution.

i An exception is thrown when an error
condition is encountered.

i It is then caught by code that receives it
and deals with it.

i Java exceptions are objects that extend the
class Throwable or one of its subclasses,
usually the subclass Exception.

i Class Throwable and its subclasses have
two constructors, one with no arguments
and one with a String argument for an
error message.

J.50

Defining Exceptions

Programmers can define their own exception
types and write code to throw them and catch
them.

Example with Attributes and Values:

public class NoSuchAttributeException extends Exception
{
 public String attrName;
 public Object newValue;

 NoSuchAttributeException(String name, Object value) {
 super("No attribute named \"" + name + "\" found");
 attrName = name;
 newValue = value;
 }
}

J.51

Throwing Exceptions

Methods that will check for errors and
throw exceptions use

ithe throws clause to tell the compiler
what kind of exceptions they may throw

i the throw statement to perform the throwing

Example:

public void replaceValue(String name, Object newValue)
 throws NoSuchAttributeException
{
 Attr attr = find(name);
 if (attr == null)
 throw new NoSuchAttributeException(name newValue);
 attr.valueOf(newValue);
}

J.52

If your method invokes a method that lists
a checked exception it its throwable clause,
it can do one of three things

iCatch the exception and handle it.

i Catch the exception and map it into one of your
own exceptions by throwing an exception of
a type declared in your own throws clause

i Declare the exception in your throws clause and
let it pass through your method, possibly adding
a finally clause that cleans up first.

J.53

Catching Exceptions

Syntax:

try <block>
catch (<exception_type> <identifier>)
 <block>
catch(<exception_type> <identifier>)
 <block>
 . . .
finally <block>

Example:

try{
 attributedObj.replaceValue(“Age”, new Integer(8));
 }
catch(NoSuchAttributeException e) {

 Attr attr = new Attr(e.attrName, e.newValue);
 attributedObj.add(attr);
}

J.54
Finally

iThe finally clause of a try statement
provides a mechanism for executing a
section of code whether or not an exception
is thrown.

iThis example closes a file when its work is
done, even if an error occurs:

public boolean searchFor(String file, String word)
 throws StreamException
{
 Stream input = null;
 try {
 input = new Stream(file);*
 while (!input.eof())
 if (input.next() == word) return* true;
 return* false; }
 *finally {
 if (input != null) input.close();
 }
}

* This can fail. * Finally is executed before any return.

