J.28
SUBCLASSES and SUPERCLASSES

The Object classistheroot of the Java
class hierarchy.

The Object class declares methods that are
implemented by all objects.

* public boolean equals(Object obj)
* public int hashCode()

* protected Object clone()

« public final Class getClass()

« protected void finalize() throws Throwable

Variables of type Object can refer to any
object and can be used in lists.

Dessert Example J.29

public class Dessert {
private String name;
private int calories;

public Dessert(String nameOf) {
name = nameOf;

}

public Dessert(String nameOf, int caloriesOf)
name = nameOf;
calories = caloriesOf;

}

public String nameOf() { return name; }

public int caloriesOf() { return calories; }

}

public class Cake extends Dessert {
private String cakeType;
private String frostType;

public Cake(String cakeNameOf, int cakeCal Of,
String cakeTypeof, String frostTypeOf) {

super(cakeNameOf, cakeCal Of);
cakeType = cakeTypeof;
frostType = frostTypeOf;

}

public Cake(String cakeNameOf, String cakeTypeOf) {
super(cakeNameOf,0);
cakeType = cakeTypeOf;
frostType = "none";

}

public String cakeTypeOf() { return cakeType; }

public String frostTypeOf() { return frostType; }

J.30

: J31
Testing Desserts and Cakes

public class DessertTest {
public static void main (String[] args) {

Dessert general = new Dessert("General",500);
System.out.printin(general.nameOf() +": " +
general .caloriesOf());

Cake acake = new Cake("Mike's Cake",800,
"German Chocolate"," Chocolate");
System.out.println(acake.nameOf() +": " + acake.cakeTypeOf()
+" " + acake.caloriesOf() + " " + acake.frostTypeOf());

Cake bcake = new Cake("Darrell’'s Cake","Carrot");
System.out.printin(bcake.nameOf() + ": " + bcake.cakeTypeOf()
+" " + bcake.caloriesOf() + " " + bcake.frostTypeOf());

General: 500
Mike’s Cake: German Chocolate 800 Chocolate
Darrell's Cake: Carrot O none

J.32
Can aprivate field of the parent class
be changed by a subclass?

public class Cake extends Dessert {
private String cakeType;
private String frostType;

public Cake(String cakeNameOf) {
super(cakeNameOf);
calories = 250;

AN

}

public String cakeTypeOf() { return cakeType; }

public String frostTypeOf() { return frostType; }

Variable caloriesin class Dessert not accessible from
class Cake.

Protected Access Solves This Problem J.33

public class Dessert {
private String name;
protected int calories;

public Dessert(String nameOf) {
name = nameOf; }

public Dessert(String nameOf, int caloriesOf) {
name = nameOf;
calories = caloriesOf; }

public String nameOf() { return name; }

public int caloriesOf() { return calories; }
}

public class DessertTest2 {
public static void main (String[] args) {
Cake ccake = new Cake("'Linda’s Cake");

System.out.printin(ccake.nameOf() + ": " + ccake.cakeTypeOf()
+" " + ccake.caloriesOf() + " " + ccake.frostTypeOf());

H

What will be printed?

What protected Really Means

Dessert
protected int calories,

Cake

Scone Pudding

WhippedCreamCake

J.34

Each class that extends Dessert inherits calories.

Code in the Cake class can access calories only

through areference to atype that is a Cake or

asubclass of Cake.

Code in the Cake class cannot access the calories

field of a Scone or a Pudding or a generic Dessert.

Note: protected static fields can be accessed in
any extended class.

J.35

Overloading vs. Overriding

® Overloading a method means providing
more than one method with the same name,
but different signatures.

® Overriding a method means replacing the
superclass’s implementation of a method
with one of your own, with an identical
signature.

Public class Cake extends Dessert {
[]

public String NameOf () {
return "Cake " + name;

}

Fields can be hidden, but not overridden

class SuperShow {
public String str = " SuperStr";

public void show() {
System.out.printIn(" Super.show: " + str); } }

class ExtendShow extends SuperShow {
public String str = "ExtendStr";

public void show() {
System.out.printIn("Extend.show: " + str); }

public static void main(String[] args) {
ExtendShow ext = new ExtendShow();
SuperShow sup = ext;
sup.show();
ext.show();
System.out.printin(" sup.str =" + sup.str);
System.out.printin(" ext.str =" + ext.str); }}

What will the output be ?

J.36

J.37

More Terminology

® Final Classes and Methods:

A method declared as final cannot be
overriden by any extended classes of its
class.

A class marked final cannot be subclassed
by any other class, and its methods are
implicitely final, too.

What are final classes and methods
needed for ?

J.38

® Abstract Classes and Methods;

A method declared as abstract needs only
asignature. The definition isleft for
implementation in extended classes.

A class marked abstract is one that has
at least one abstract method.

In what kinds of applications are abstract
classes and methods useful ?

J.39
INTERFACES

Interfaces provide away to declare atype
consisting only of abstract methods and
constants, enabling any implementation to
be written for those methods.

“An interface is an expression of pure design,
where a class is a mix of design and
implementation.”

Interface Attributed {
void add(String attrName, Attr newALttr);
Attr find(String attrName);
Attr remove(String attrName);

}

public class AVListNode {
String Attribute;
Attr Value;
AVListNode Next;

-}

public class AV Table implements Attributed {
private AVListNode Head;

public void find(String attrName) {
AVListNode Marker;

Marker = Head;
while (Marker = null &&
Marker.Attribute |= attrName)
Marker = Marker.Next;

if (Marker !=null) return Marker.Value;
elsereturn null;
}

}

J.40

J4l

More About Interfaces

A class definition can both extend a class
and implement one or more interfaces.

Class AttributedBody extends Body
implements Attributed {

Interfaces add multiple inheritance to Java.

interface W { } w

interface X extends W { ... }

interface Y extends W {. ..}
class Z implements X, Y {...}

J42
Name Conflicts

What happens when a method of the same
name appears in more than one interface,
ie. in both X and Y?

® |f methodsin X and Y have the same
name but different signatures, the Z
class will have two overloaded methods.

® |f the methodsin X and Y have exactly
the same signature, the Z class will have
one method with that signature.

® If the signatures differ only in return type,
you cannot implement both X and Y.

® |f the two methods differ only in the types of
exceptions they throw, there must be only one
implementation that satisfies both throws clauses.

