
1

J.28

SUBCLASSES and SUPERCLASSES

The Object class is the root of the Java
class hierarchy.

The Object class declares methods that are
implemented by all objects.

• public boolean equals(Object obj)

• public int hashCode()

• protected Object clone()

• public final Class getClass()

• protected void finalize() throws Throwable

Variables of type Object can refer to any
object and can be used in lists.

J.29
Dessert Example

public class Dessert {
 private String name;
 private int calories;

 public Dessert(String nameOf) {
 name = nameOf;
 }

 public Dessert(String nameOf, int caloriesOf) {
 name = nameOf;
 calories = caloriesOf;
 }

 public String nameOf() { return name; }

 public int caloriesOf() { return calories; }
 }

2

J.30

public class Cake extends Dessert {
 private String cakeType;
 private String frostType;

 public Cake(String cakeNameOf, int cakeCalOf,
 String cakeTypeof, String frostTypeOf) {

 super(cakeNameOf, cakeCalOf);
 cakeType = cakeTypeof;
 frostType = frostTypeOf;
 }

 public Cake(String cakeNameOf, String cakeTypeOf) {
 super(cakeNameOf,0);
 cakeType = cakeTypeOf;
 frostType = "none";
 }

 public String cakeTypeOf() { return cakeType; }

 public String frostTypeOf() { return frostType; }

 }

J.31

 public class DessertTest {

 public static void main (String[] args) {

 Dessert general = new Dessert("General",500);
 System.out.println(general.nameOf() + ": " +
 general.caloriesOf());

 Cake acake = new Cake("Mike’s Cake",800,
 "German Chocolate","Chocolate");
 System.out.println(acake.nameOf() + ": " + acake.cakeTypeOf()
 + " " + acake.caloriesOf() + " " + acake.frostTypeOf());

 Cake bcake = new Cake("Darrell’s Cake","Carrot");
 System.out.println(bcake.nameOf() + ": " + bcake.cakeTypeOf()
 + " " + bcake.caloriesOf() + " " + bcake.frostTypeOf());

 }
}

General: 500
Mike’s Cake: German Chocolate 800 Chocolate
Darrell’s Cake: Carrot 0 none

Testing Desserts and Cakes

3

J.32

 public class Cake extends Dessert {
 private String cakeType;
 private String frostType;

 public Cake(String cakeNameOf) {
 super(cakeNameOf);
 calories = 250;
 ^
 }

 public String cakeTypeOf() { return cakeType; }

 public String frostTypeOf() { return frostType; }

 }

Can a private field of the parent class
be changed by a subclass?

Variable calories in class Dessert not accessible from
class Cake.

J.33Protected Access Solves This Problem

public class Dessert {
 private String name;
 protected int calories;

 public Dessert(String nameOf) {
 name = nameOf; }

 public Dessert(String nameOf, int caloriesOf) {
 name = nameOf;
 calories = caloriesOf; }

 public String nameOf() { return name; }

 public int caloriesOf() { return calories; }
 }

 public class DessertTest2 {

 public static void main (String[] args) {

 Cake ccake = new Cake("Linda’s Cake");

 System.out.println(ccake.nameOf() + ": " + ccake.cakeTypeOf()
 + " " + ccake.caloriesOf() + " " + ccake.frostTypeOf());

 }}

What will be printed?

4

J.34
What protected Really Means

Dessert
 protected int calories;

Cake Pudding

WhippedCreamCake

Each class that extends Dessert inherits calories.

Code in the Cake class can access calories only
through a reference to a type that is a Cake or
a subclass of Cake.

Code in the Cake class cannot access the calories
field of a Scone or a Pudding or a generic Dessert.

Scone

Note: protected static fields can be accessed in
any extended class.

J.35

Overloading vs. Overriding

iOverloading a method means providing
more than one method with the same name,
but different signatures.

iOverriding a method means replacing the
superclass’s implementation of a method
with one of your own, with an identical
signature.

Public class Cake extends Dessert {
 i
 i
 i
public String NameOf() {
return "Cake " + name;

}

5

J.36
Fields can be hidden, but not overridden

class SuperShow {
 public String str = "SuperStr";

 public void show() {
 System.out.println("Super.show: " + str); } }

class ExtendShow extends SuperShow {
 public String str = "ExtendStr";

 public void show() {
 System.out.println("Extend.show: " + str); }

 public static void main(String[] args) {
 ExtendShow ext = new ExtendShow();
 SuperShow sup = ext;
 sup.show();
 ext.show();
 System.out.println(" sup.str = " + sup.str);
 System.out.println(" ext.str = " + ext.str); }}

What will the output be ?

J.37

More Terminology

A method declared as final cannot be
overriden by any extended classes of its
class.

A class marked final cannot be subclassed
by any other class, and its methods are
implicitely final, too.

iFinal Classes and Methods:

What are final classes and methods
needed for ?

6

J.38

i Abstract Classes and Methods:

A method declared as abstract needs only
a signature. The definition is left for
implementation in extended classes.

A class marked abstract is one that has
at least one abstract method.

In what kinds of applications are abstract
classes and methods useful?

J.39

INTERFACES

Interfaces provide a way to declare a type
consisting only of abstract methods and
constants, enabling any implementation to
be written for those methods.

“An interface is an expression of pure design,
where a class is a mix of design and
implementation.”

Interface Attributed {
 void add(String attrName, Attr newAttr);
 Attr find(String attrName);
 Attr remove(String attrName);
}

7

J.40

public class AVTable implements Attributed {
 private AVListNode Head;

 public void find(String attrName) {
 AVListNode Marker;

 Marker = Head;
 while (Marker != null &&
 Marker.Attribute != attrName)
 Marker = Marker.Next;

 if (Marker != null) return Marker.Value;
 else return null;
 } . . .
}

public class AVListNode {
 String Attribute;
 Attr Value;
 AVListNode Next;
 . . . }

J.41

More About Interfaces

A class definition can both extend a class
and implement one or more interfaces.

Class AttributedBody extends Body
 implements Attributed {
. . .
}

Interfaces add multiple inheritance to Java.

interface W { }
interface X extends W { … }
interface Y extends W { . . . }
class Z implements X, Y { . . . }

W

X Y

Z

8

J.42
Name Conflicts

What happens when a method of the same
name appears in more than one interface,
ie. in both X and Y?

iIf methods in X and Y have the same
name but different signatures, the Z
class will have two overloaded methods.

iIf the methods in X and Y have exactly
the same signature, the Z class will have
one method with that signature.

iIf the signatures differ only in return type,
you cannot implement both X and Y.

iIf the two methods differ only in the types of
exceptions they throw, there must be only one
 implementation that satisfies both throws clauses.

