
1

J.16
Classes and Objects in Java

SYNTAX:
Class <name> {
 <field declarations>
 <method definitions>
}

Class Body {
 public long idNum;
 public String nameFor;
 public Body orbits;
 public static long nextID = 0;

 public long getID() {
 return idNum;
 }

 public String getName() {
 return nameFor;
 }
}

J.17

Instance Creation with New

Body sun = new Body();
sun.idNum = Body.nextID++;
sun.NameFor = "Sol ";
sun.orbits = null;

Body earth = new Body();
earth.idNum = Body.nextID++;
earth.nameFor = "Earth";
earth.orbits = sun;

"Earth"

"Sol"

2

J.18

Access to Fields and Methods

public: accessible anywhere the class is and
 inherited by subclasses

private: accessible ONLY in the class itself

protected: accessible to subclasses and code
 in the same package and inherited
 by subclasses

package: accessible only to code and inherited
 only by subclasses in the same
 package

How does this compare to C++ ?

J.19
Defining Constructors

Class Body {
 public long idNum;
 public String name = "unnamed";
 public Body orbits = null;

 private static long nextID = 0;

 Body() {
 idNum = nextID++;
 }

 Body(String bodyName,
 Body orbitsAround) {
 this();
 name = bodyName;
 orbits = orbitsAround;
 }
}

NOTE: a constructor can invoke another
constructor from the same class using this.

*

3

J.20

Overloading: 2 methods with the same
 name, but different signatures (different
 number or type of parameters).

Body sun = new Body("Sol", null);
Body earth = new Body("Earth", sun);

Body mars = new Body();
mars.name = "Mars";
mars.orbits = sun;

Use of Constructors

constructor with 2 arguments

constructor with no arguments

When are zero-argument constructors useful?

J.21

The Method toString()

Public String toString() {

 String desc = idNum + " ("
 + name + ")";

 if (orbits != null)
 desc += " orbits " +
 orbits.toString();

NOTE: the toString method is special.

If you provide a toString() method for
an object, then it will be used whenever
the object is used in a string concatenation.

System.out.println("Body " + earth);

What is the output ?

4

J.22
PARAMETER PASSAGE

In Java, parameters are passed by value.

hVariables containing primitive types
 cannot be changed by a method.

Class PassByValue{
 public static void main(String[] args) {
 double one = 1.0;

 System.out.println("before: one = " + one);
 halveIt(one);
 System.out.println("after: one = " + one);
}

 public static void halveIt(double arg) {
 arg /= 2.0;
 System.out.println("halved: arg = " + arg);

 }
}

What will the output be ?

J.23

iIf a variable contains an object reference,
the fields of that object can be changed.

Class PassRefByValue {
 public static void main(String[] args) {
 Body sirius = new Body("Sirius", null);

 System.out.println("before: " + sirius);
 commonName(sirius);
 System.out.println("after: " + sirius);
 }

 public static void commonName(Body bodyRef) {
 bodyRef.name = "Dog Star";
 bodyRef = null;
 }
}

What does this do?
Does the name field of sirius change ?
Does the value of sirius change to null?

5

J.24

STATIC MEMBERS

A member is a field or a method.

A static member is a member that belongs to
the class, not to instances of the class.

A static field is just a class variable, such as
 nextID in class Body. It is assigned its
 initial value before any instances of the
 class are created.

A static initialization block can be used to
 initialize static structures.

 static { <initialization statements> }

A static method (also called a class method)
 can be used to modify static fields.

J.25
GARBAGE COLLECTION

iJava has new, but it doesn’t have free.

iThe garbage collector is a system method
that finds objects that are no longer referenced
and reclaims their memory.

iGarbage collection is especially useful in
applications that require linked structures,
such as linked lists.

myList

2 i 27 nulli 1 i

myList = null;

null 1 i 2 i 27 null

Dangling referencemyList

6

J.26
EXAMPLE:
Using Java to Implement Linked Lists

Public class ListNode
{
 int Element;
 ListNode Next;

 ListNode(int NewElement, ListNode Node) {
 Element = NewElement;
 Next = Node;
 } }

public class IntList {
 ListNode Head;

 IntList() {
 Head = new ListNode(0, null); }

 void InsertEnd(int NewElement) {
 ListNode Marker;
 for (Marker = Head; Marker.Next != null;
 Marker = Marker.Next);
 Marker.Next = new ListNode(NewElement,
 null); }
}

J.27

Void Delete(int DelElement) throws ListException {

 ListNode Marker;
 for (Marker = Head; Marker.Next != null &&
 Marker.Next.Element != DelElement;
 Marker = Marker.Next);

 if (Marker.Next != null &&
 Marker.Next.Element == DelElement)
 Marker.Next = Marker.Next.Next;
 else
 throw new ListException("Cannot delete:
 element not in list.");
}

What does this do when
Delete(17)
is invoked for the list myList?

What about when
Delete(1)
is invoked for the list myList?
What’s wrong with myList ?

