
1

C.17

SYNTAX AND SEMANTICS

SYNTAX: a set of formal rules that specify
 precisely what constitutes a valid program.

Specifying the syntax of a language:

alphabet: the set of allowable characters

 {ABCDEFG…TUVWXYZabcdefg….
 tuvwxyz0123456789}

tokens: the strings of characters that form
 the basic syntactic entities

 MySqrt x123 92 begin end

C.18

lexical rules: rules that define the valid
 tokens of the language.

syntactic rules: rules that specify the
 allowable arrangement of tokens in
 a program

BNF (Backus - Naur Form*): a formal
 language for specifying the syntax of
 a language, including both lexical rules
 and syntactic rules.

*John Backus defined ALGOL60 with a formal grammar+.

 Peter Naur was the editor of the ALGOL60 report.

+Context-free grammars are studied in CSE 322.

2

C.19

BNF and EBNF

A terminal symbol is one from the alphabet
 of the language being specified.

A nonterminal symbol is a symbol used to
 provide a name for an intermediate construct.

A BNF rule has the form

 <nonterminal> ::= <string of terminals and
 nonterminals>

It means that in the derivation of a program
in the language, the <nonterminal> can be
replaced by its definition on the right-hand side
of the rule.

C.20

EXAMPLE

BNF grammar for < identifier> constructed
 in a top-down manner:

<identifier> : := <alpha> |
 <alpha> <anstring>

<anstring> ::= <alpha> | <num> |
 <anstring> (<alpha> | <num>)

<alpha> ::= A | B | C | . . . X | Y | Z |
 a | b | c | . . . x | y | z

<num> ::= 0 | 1 | 2 | . . . | 8 | 9

3

C.21

DERIVATION

A derivation of a syntactic construct
from a BNF grammar shows the steps
required to derive the construct using
that grammar.

<identifier> ➾ <alpha> <anstring>
 ➾ <alpha> <anstring> <num>
 ➾ <alpha> <alpha> <num>
 ➾ X <alpha> <num>
 ➾ X Q <num>
 ➾ X Q 2

Derivation of identifier XQ2

C.22

Derivation Tree

<identifier>

<alpha> <anstring>

<anstring> <num>

<alpha>

X Q 2

Can you derive the identifier MyId ?

4

C.23

Extended BNF

Regular BNF leads to overly-complex
rules and lengthy derivations.

EBNF uses two extra symbols to be
more efficient.

+ means one or more instances

* means zero or more instances

<identifier> ::= <alpha> <alphanum>*

<alphanum> ::= <alpha> | <num>

How does this affect the derivation
of MyId ?

C.24
IN-CLASS EXERCISE

Derive a meanful computer program that
finds the sum of the first N integers from
the EBNF grammar of Figure 2.1 of the text.

