
Section 10
Mixins & Subclasses

Spring 2020

Dispatch Overview
Dispatch is the runtime procedure for looking up which function to call
based on the parameters given:
• Ruby (and Java) use Single Dispatch on the implicit self (or “this”)

parameter
• Uses runtime class of self to lookup the method when a call is made
• This is what you learned in CSE 143

• Double Dispatch uses the runtime classes of both self and a single
method parameter

• Ruby/Java do not have this, but we can emulate it
• This is what you will do in HW7

• You can dispatch on any number of the parameters and the general term for
this is Multiple Dispatch or Multimethods

Emulating Double Dispatch

• To emulate double dispatch in Ruby (on HW7) just use the built-in single
dispatch procedure twice!

• Have the principal method immediately call another method on its
first parameter, passing self as an argument

• The second call will implicitly know the class of the self parameter
• It will also know the class of the first parameter of the principal

method, because of Single Dispatch
• There are other ways to emulate double dispatch

• Found as an idiom in SML by using case expressions

Double Dispatch Example: RPS
● Suppose we wanted to code up a game of “Rock-Paper-Scissors”:

○ A game that is played in rounds with 2 players.
○ Each player gets to pick a weapon: one of “Rock”, “Paper”, or

“Scissors”.
● Each combination results in a winner/loser (except when both are the

same):
○ Rock beats Scissors
○ Paper beats Rock
○ Scissors beats Paper

● What are the different combinations of games?
○ Player 1 fights Player 2 with a tool, and Player 2 responds,

which determines the outcome.
Player 1

Rock Paper Scissors

Rock Tie Paper wins Rock wins

Paper Paper wins Tie Scissor wins

Scissors Rock wins Scissor wins Tie

Player 2

Double Dispatch Example: RPS

● How could we represent this in an OOP way?
○ How does “Class 1” fight “Class 2”? How do we

encode the “tool”? How do we encode the
“outcome”?

Rock Paper Scissors

Rock Tie Paper wins Rock wins

Paper Paper wins Tie Scissor wins

Scissors Rock wins Scissor wins Tie

Class 2

Class 1

Double Dispatch Example: RPS

Double Dispatch Exercise:

1

0

class A
def f x

x.fWithA self
end

def fWithA a
"(a, a) case"

end

def fWithB b
"(b, a) case"

end
end

class B
def f x

x.fWithB self
end

def fWithA a
"(a, b) case"

end

def fWithB b
"(b, b) case"

end
end

What’s the table? (hint, it’s 2x2)

A B

A (a,a) case (b,a) case

B (a,b) case (b,b) case

Class 1

Class 2

Double Dispatch Exercise:
What’s the table? (hint, it’s 2x2)

Extending RPS

Rock Paper Scissors

Rock Tie Paper wins Rock wins

Paper Paper wins Tie Scissor wins

Scissors Rock wins Scissor wins Tie

toString* Rock Paper Scissors

* note: not a Class, but a method, because it only operates on 1 class, not 2.

What if we wanted to extend our game to add an action to convert
each of the tools to strings?
● What would we have to change so that we could still play this game, but with

another action?

Mixins

● Collection of methods
○ Unlike class, you cannot instantiate it

● Can include any number of mixins
● Provides powerful extensions to the class with little

cost

Mixins

● It’s just “copy and paste the code into the class”
○ Will override existing code
○ Have access to instance functions
○ Have access to instance variables

Mixins Example
module
Doubler def
double

self + self # assume included in classes w/
+ end

end
class String
include
Doubler

end
class AnotherPt
attr_accessor :x,
:y include Doubler
def + other

ans = AnotherPt.new
ans.x = self.x +
other.x ans.y = self.y
+ other.y ans

end
end

Method Lookup Rules
1. Current class
2. Current class’s mixins

a. Latest included mixin
b. …..
c. Earliest included mixin

3. Current class’s super class
4. Current class’s super class’s mixins
5. …..

Comparable

It provides you methods to compute
<, >, ==, !=, >=, <=

What’s needed?
• Define function <=> (spaceship operator)

• Return negative, 0 or positive number

Very similar to Java Comparable interface which requires
compareTo

Enumerable
It provides you methods to iterate over the object

-> supports map, find!
What’s needed?
• Define function each

• each will either call each of other object or will
yield result

Very similar to Java Iterable interface

Java Subtyping
Arrays should work just like records in terms of depth subtyping
● But in Java, if t1 <: t2, then t1[] <: t2[]
● So this code type-checks, surprisingly

class Point { … }
class ColorPoint extends Point { … }
…
void m1(Point[] pt_arr) {

pt_arr[0] = new Point(3,4);
}
String m2(int x) {

ColorPoint[] cpt_arr = new ColorPoint[x];
for (int i=0; i < x; i++)

cpt_arr[i] = new ColorPoint(0,0,"green");
m1(cpt_arr); // !
return cpt_arr[0].color; // !

}

Why?
More flexible type system allows more programs but prevents fewer errors
● Seemed especially important before Java/C# had generics

Good news: despite this “inappropriate” depth subtyping
● e.color will never fail due to there being no color field
● Array reads e1[e2] always return a (subtype of) t if e1 is a t[]

Bad news: to get the good news
● e1[e2]=e3 can fail even if e1 has type t[] and e3 has type t
● Array stores check the run-time class of e1's elements and do not allow

storing a supertype
● No type-system help to avoid such bugs / performance cost

wat

https://www.destroyallsoftware.com/talks/wat

Thank you for a great quarter!

Take care of yourself and
eachother 🤝

