

Section 9 Worksheet
Ruby Practice

Practice with Arrays and blocks
1) Write a method ​lengths ​that takes an array and returns a new array that is the result of calling
length ​on all of the elements in the given array.

2) Write a method ​rev ​that takes an array and returns a new array with all of the elements from the
original array in the reverse order. You aren’t allowed to use the Array class’ ​reverse ​method (though
in real life you probably should).

3) Write a method ​num_even ​that takes an array and returns the number of even elements in that
array. There’s a handy method ​even? ​that you may find useful.

4) Write a method ​all_equal? ​that returns ​true ​if all the elements in a given array are equal or if
the given array is empty and ​false ​otherwise.

5) Write a method ​prime ​that takes in a positive integer greater than ​1 ​and returns an array of all the
prime numbers from ​1 ​to the given number.

6) Write a method ​trigger_sum ​that takes in an array and a “trigger” number. ​trigger_sum
creates a cumulative sum of all the values in the array until it finds the trigger number, at which point it
begins subtracting future numbers (including the trigger) from the cumulative sum. The trigger only
occurs once. If the trigger is not in the given array, then it will just end up returning the cumulative sum.

Practice with Hashes
1) Write a method ​keys_and_values ​that takes a hash and returns an array of elements that are
both keys and values in the given hash. You might find the arrays set intersection operator ​& ​to be
useful.

2) Write a method ​flip_hash ​that takes a hash and returns a new hash where every key-value pair
in the original hash is flipped.

3) Write a method ​intersect ​ that takes two hashes and returns a new hash that contains all of the
key-value pairs that appear in both of the given hashes.

Practice using blocks
Implement the following functions using the arrays ​each ​method. Remember you can call a block
given to a method using yield, and you can pass yield any necessary arguments.

1) Implement ​our_map ​which takes an array and expects a block and behaves as the built-in arrays
map ​function would with the given block.

2) Implement ​our_select ​which takes an array and expects a block and behaves as the built-in
arrays ​select ​function would with the given block.

3) Implement ​our_inject ​which takes an array and an initial value and expects a block and behaves
as the built-in arrays ​inject ​function would with the given initial value and block.

Super brief Ruby cheat sheet ​(really just for this handout)

arr = [1, 2, 3, 4, 5]

calls block on each value in arr, returns arr

arr.each { |x| block }

returns a new array of block mapped across all elements in arr

arr.map { |x| block }

returns a new array of elements in arr for which the block returns true

arr.select { |x| block }

returns the number of elements for which the given block is true

arr.count { |x| block }

behaves like fold over arr starting at init and accumulating the block

arr.inject(init) { |acc, x| block }

true only if all the elements in arr return true for the given block

arr.all? { |x| block }

true if any of the elements in arr return true for the given block

arr.any? { |x| block }

hashes also have a version of many iterative functions the blocks

typically expect two arguments instead of one (for key and value)

h = {1=>2, 3=>4, 5=>6}

For example, each

h.each {|k, v| puts k + v }

hashes also have a way to access the array of keys and the array of

values

h.keys

h.values

