
Section 9
Intro to Ruby

Portions of slides adapted from Josh Pollock

Spring 2020

Learning Objectives

● Review Ruby classes and objects

● Introduce arrays, hashes, and ranges

● Ruby closures: blocks, procs, and lambdas

Getting Started with Ruby

● Make sure to follow the instructions for using a VM for Ruby
on the course website (which also provides an image)

● Please do this by tomorrow to account for any possible
issues

Review: The rules of class-based OOP

In Ruby:
1. All values are references to objects
2. Objects communicate via method calls, also known as messages
3. Each object has its own (private) state
4. Every object is an instance of a class
5. An object’s class determines the object’s behavior

– How it handles method calls
– Class contains method definitions

Java/C#/etc. similar but do not follow (1) (e.g., numbers, null) and
allow objects to have non-private state

Defining classes and methods

• Define a class with methods as defined
• Method returns its last expression

– Ruby also has explicit return statement
• Syntax note: Line breaks often required (else need more

syntax), but indentation always only style

class Name
def method_name1 method_args1
expression1

end
def method_name2 method_args2
expression2

end
…

end

Conventions and sugar
• Actually, for field @foo the convention is to name the methods

• Cute sugar: When using a method ending in =, can have space
before the =

• Because defining getters/setters is so common, there is
shorthand for it in class definitions
– Define just getters: attr_reader :foo,:bar,…
– Define getters and setters: attr_accessor :foo,:bar,
…

• Despite sugar: getters/setters are just methods

def foo
@foo

end

def foo= x
@foo = x

end

e.foo = 42

Ruby Class Exercise
Let’s write a class BankAccount which:
● Can be initialized with an optional argument for starting

balance otherwise has $0 in funds initially
● Has a method withdraw to withdraw x funds, returning the

amount withdrawn (if the balance is less than the argument,
set the balance to 0)

● Has a method deposit to deposit x funds to the balance
● Has a get_balance method to return the current balance
● Has method merge_accounts which takes another

BankAccount and adds its balance to the current object
● Has a to_s method to return a string representation of the

balance in $X.XX format (e.g. "$3.41")

What are some possible invalid arguments to consider for
different methods? Class invariants? Are there any appropriate
helper methods to make protected or private?

Arrays

• Ruby uses dynamically sized arrays like Java’s ArrayLists.

• These are nice middle ground between linked lists and
statically sized arrays.

• Allow fast random access and asymptotically fast insertion
and deletion.

• Ruby array entries don’t need to have the same type

• (“natural” in dynamically typed languages)

• Ruby arrays are super flexible.

• Ruby uses arrays for lists, sets, stacks, and queues!

Examples

Let’s see some code examples and more useful methods using
arrays.

Hashes: Dynamic Records

• A map from keys to values.

• Keys don’t have to have the same type!
• Keys and entries are mutable. They can be updated

dynamically.
• See code for examples.

Ranges: The Power of Enumerators

• Ranges are enumerators, not lists.

• Somewhat like the streams we saw in Racket, they are lazy.
• The only do computation when necessary.
• Syntax:

i..j [i, j] -- includes j
i...j [i, j) -- excludes j

• For step size, use .step

The Takeaway

• Ruby has several flexible ways of constructing complex
data.

• This flexibility is characteristic of dynamically typed
languages (cf. Python).

• Consult the Ruby documentation. It’s really good.

Ruby Closures

• Ruby gives us 3 ways to define a closure:
– Block
– Proc
– Lambda

• Lexical scope, but variables are stored as references to
objects

• E.g. Modifying an array referenced by a closure may change
its behavior

• Use .call to call them

Block Cheat Sheet

• The most common type of closure in Ruby

• All methods take a block argument, it may not be used

• Call a block with yield

• Use return to return from an enclosing method

• Give a block an explicit name with &block_name

Procs

• Procs are essentially blocks as objects.

• Initialize like any other object.

Issues with Blocks and Procs

• return jumps out of the method where the block was
called.

• They don’t check they’re passed the right number of
arguments.

Lambda

• Lambda is a special kind of Proc with special behavior

• Create with lambda or ->

• Work like “normal” closures

• return returns from the lambda

• Lambda checks it gets the right number of arguments

Practice Using Blocks and Procs

Let’s write Array#map

The Takeaway

• Ruby takes a pragmatic, OO approach to first-class
functions.

• The typical case is supported by blocks. You should use
them most often.

• Ruby is a real-word language so it supports the long-tail of
use cases with Proc and lambda.

• This makes the language more complex, especially because
Proc and lambda extend the language implementation.

