
CSE341: Programming Languages

Section 8
Macros and Language Interpretation

Spring 2020

Agenda

● Interpreting LBI (Language Being Implemented)
○ Assume correct syntax
○ Check for correct semantics
○ Evaluating the AST

● LBI “Macros”

Building an LBI Interpreter

● We are skipping the parsing phase
○ Can be skipped because AST (“Abstract Syntax Tree”)

nodes represented as Racket structs
● LBI vs. Metalanguage

○ For HW5, MUPL is the LBI
○ Racket is the “metalanguage”

A Larger Language Example

(struct const (int) #:transparent)

(struct negate (e1) #:transparent)

(struct add (e1 e2) #:transparent)

(struct bool (b) #:transparent)

(struct multiply (e1 e2) #:transparent)

(struct eq-num (e1 e2) #:transparent)

(struct if-then-else (e1 e2 e3) #:transparent)

LBI → (add (const 1) (const 1))

Metalanguage → Racket structs/operations on structs/the above
code

Let’s try Prob 1 on the worksheet!

Correct Syntax Examples

Using these Racket structs…

(struct const (int) #:transparent)

(struct add (e1 e2) #:transparent)

(struct if-then-else (e1 e2 e3) #:transparent)

…we can interpret these LBI programs:
(const 34)
(add (const 34) (const 30))
(if-then-else (bool #t) (const 10) (const 20))

Incorrect Syntax Examples

While using these Racket structs…

(struct const (int) #:transparent)

(struct add (e1 e2) #:transparent)

(struct if-then-else (e1 e2 e3) #:transparent)

…we can assume we won’t see LBI programs like:
(const “dan then dog”)
(add 5 4)
(if-then-else (bool ‘(1 2)) (const 5) (bool #f))

Illegal input ASTs may crash the interpreter - this is OK

Racket vs. LBI

Structs in Racket, when defined to take an argument, can take any
Racket value:

(struct const (int) #:transparent)

(struct add (e1 e2) #:transparent)

(struct if-then-else (e1 e2 e3) #:transparent)

But in LBI, we restrict const to take only an integer value, add to
take two LBI expressions, and so on…
(const “dan then dog”)
(add 5 4)
(if-then-else (bool ‘(1 2)) (const 5) (bool #f))

Illegal input ASTs may crash the interpreter - this is OK

LBI Semantics

● All values evaluate to themselves. This includes bool

and const.
● An add evaluates its subexpressions and, assuming

they both produce integers, produces the integer that

is their sum.
● An if-then-else evaluates its first expression to a

value v1. If it is a boolean, then if it is #t, then

evaluates its second subexpression, else it evaluates its

third subexpression.

● …...

Check for Correct Semantics

What if the program is a legal AST, but evaluation of it tries to use
the wrong kind of value?

(struct const (int) #:transparent)

(struct add (e1 e2) #:transparent)

(struct if-then-else (e1 e2 e3) #:transparent)

This is invalid LBI syntax that we need to check for…
(add (const 1) (bool #t))
(if-then-else (const 5) (const 5) (bool #f))

You should detect this and give an error message that is not in
terms of the interpreter implementation

Semantic Error or Illegal Program?

(const #t)

(negate (bool #t))

(if-then-else (multiply (const 1) (const 2))
 (const 1) (const 2))

(eq-num 5 (bool #f))

(multiply (eq-num (bool #t) (bool #f)) (const 3))

Illegal Program! Can assume const always contain numbers.

Semantic Error! Can only negate const. Must check for this!

Semantic Error! e1 in if-then-else should evaluate to a bool. Must check for this!

Both! 5 is not a valid expression (can assume these won’t happen). However, e1/e2 in
eq-num must evaluate to const, and bool is not a const, which we should check!

Semantic Error! e1 in multiply should evaluate to a const, but eq-num evaluates to a
bool. Likewise, eq-num operates on consts, not bools. Should detect both of these!

What’s the AST?
(if-then-else ; evaluates to (const 7)

(bool #t) (add (const 3) (const 4)) (const 20))

if-then-else

bool
add const

const const

Evaluating the AST

● eval-exp should return a LBI value
● LBI values all evaluate to themselves
● Otherwise, we haven’t interpreted far enough

(const 7) ; evaluates to (const 7)

(add (const 3) (const 4)) ; evaluates to (const 7)

(if-then-else ; evaluates to (const 7)

(bool #t) (add (const 3) (const 4)) (const 20))

Evaluating the AST

What’s wrong with this implementation of eval? (other than it being
called “eval-exp-wrong”...)

Evaluating the AST

● It doesn’t recursively check for semantic correctness!!

○ Let’s see a better version of this….

…. by doing Problem #2 of the Worksheet!

Review: Macros

● Extend language syntax (allow new constructs)
● Written in terms of existing syntax
● Expanded before language is actually interpreted or compiled

Example Racket macro definitions

Two simple macros

Winter 2020 16CSE341: Programming Languages

(define-syntax my-if ; macro name
(syntax-rules (then else) ; other keywords
[(my-if e1 then e2 else e3) ; macro use
(if e1 e2 e3)])) ; form of expansion

(define-syntax comment-out ; macro name
(syntax-rules () ; other keywords
[(comment-out ignore instead) ; macro use
instead])) ; form of expansion

If the form of the use matches, do the corresponding expansion

– In these examples, list of possible use forms has length 1

– Else syntax error

Local variables in macros
In C/C++, defining local variables inside macros is unwise

– When needed done with hacks like __strange_name34

Here is why with a silly example:

– Macro:

– Use:

– Naïve expansion:

– But instead Racket “gets it right,” which is part of hygiene

Winter 2020 17CSE341: Programming Languages

(define-syntax dbl
(syntax-rules ()

[(dbl x) (let ([y 1])
(* 2 x y))]))

(let ([y 7]) (dbl y))

(let ([y 7]) (let ([y 1])
(* 2 y y)))

How to implement “Macros” In LBI

• Interpreting LBI using Racket as the metalanguage
• LBI is made up of Racket structs
• In Racket, these are just data types
• Why not write a Racket function that returns LBI ASTs?

LBI “Macros”

(++ (++ (const 7)))

(define (++ exp) (add (const 1) exp))

If our LBI Macro is a Racket function:

Expands to:

(add (const 1) (add (const 1) (const 7)))

Then the LBI code

LBI “Macros”

(andalso (bool #t) (bool #t))

((define (andalso e1 e2) (if-then-else e1 e2 (bool #f)))

If our LBI Macro is a Racket function:

Expands to:
(if-then-else (bool #t) (bool #t) (bool #f))

Then the LBI code

