CSE 341 | Section 7 Key

Q1 (Streams): Define a function zero-through-three that returns a stream which cycles
through the values 0, 1, 2, 3 every time it's called, starting with O (Racket has a function
remainder that may be useful).

(define zero-through-three
(letrec ([f (lambda (x)
(cons (remainder x 4)
(lambda () (£ (+ x 1)))))1)
(lambda () (£ 0))))

Q2 (Streams): Define a function zero-through-n that takes a number n and returns a
stream which cycles through the values 0, 1, 2, ..., n-1 every time it's called, starting with 0.
You may assume n is non-negative.

(define (zero-through-n n)
(letrec ([f (lambda (x)
(cons (remainder x n)
(lambda () (£ (+ x 1)))))]1)
(lambda () (£ 0))))

Q3 (2019 Summer Final Q2 (a)):



(Thunks and Streams — 18 points) As in class, we define a stream to be a thunk that when called returns a pair
where the cdr of the pair is a stream. We assume all streams are pure (no printing, mutation, etc.). Assume the
following streams are defined:

nats = 1, 2, 3, 4, 5, ... (the natural numbers)
evens = 2, 4, 6, 8, 10, ... (thepositive even integers)
negs = -1, -2, -3, -4, -5, ... (thenegative integers)

Write a Racket function weave-streams that takes two stream arguments, s1 and s2, and returns a stream.
The resulting stream should contain alternating elements from the two argument streams. That is, the odd-
numbered elements of the result stream should be elements (in order) from s1, and the even-numbered elements
of the result stream should be elements (in order) from s2.

For example, (weave-streams npts negs) would represent1l, -1, 2, -2, 3, -3,

(define (weave-streams sl s2)
(letrec ([loop (lambda (curr next)
(lambda () (cons (car (curr))
(weave-streams next (cdr (curr))))))l])
(loop sl s2)))



