
CSE 341 | Section 6

Racket: Basics, Lists, and Delayed Evaluation

Q1 (Scope Review): Consider the following Racket code:

(define x 3)

(define f1

 (lambda (x)

 (let ([y (+ x 1)])

 (+ y x))))

(define x 3)

(define f2

 (let ([y (+ x 1)])

 (lambda (x)

 (+ y x))))

What is (f1 2) bound to? 5

What is (f2 2) bound to? 6

Q2 (Functions): Define a function named digit-sum that accepts an integer n and returns the
sum of its digits. For example, the call (digit-sum 341) should return 8 (since 3 + 4 + 1 =
8). If passed a negative parameter, the function should return the negative sum of the digits. For
example, the call (digit-sum -341) should return -8 (since -(3 + 4 + 1) = -8). You may
assume that only integers are passed as arguments. Use racket functions remainder and
quotient .

(define (digit-sum n)

 (if (= n 0)

 0

 (+ (remainder n 10)

 (digit-sum (quotient n 10)))))

Q3 (Functions): Write a Racket function named star-string that accepts an integer argument n
and returns a string of stars (asterisks) 2n long (i.e., 2 to the nth power). Use the racket
string-append function. For example:

Call Output Reason

(star-string 0) "*" 20 = 1

(star-string 1) "**" 21 = 2

(star-string 2) "****" 22 = 4

(star-string 3) "********" 23 = 8

(define (star-string n)

 (if (= n 0)

 "*"

 (let

 ([s (star-string (- n 1))])

 (string-append s s))))

Q4 (Lists): Define a function count-in-range that takes a list of numbers and two numbers
lo and hi and returns the count of elements in the list that are between lo and hi (inclusive).

(define (count-in-range xs lo hi)

 (if (null? xs)

 0

 (let ([x (car xs)]

 [cnt (count-in-range (cdr xs) lo hi)])

 (if (and (>= x lo) (<= x hi))

 (+ 1 cnt)

 cnt))))

Test: (= 4 (count-in-range (list 1 2 3 4 5) 2 5))

Q5 (Lists): Define a function partition-parity that takes a list as an argument and returns
a pair of lists such that the first list holds all even values of the argument and the second list
holds all odd (maintaining original order). Use racket function even? or odd? .

(define (partition-parity xs)

 (if (null? xs)

 (cons null null)

 (let ([x (car xs)]

 [rest (partition-parity (cdr xs))])

 (if (even? x)

 (cons (cons x (car rest)) (cdr rest))

 (cons (car rest) (cons x (cdr rest)))))))

Q6 (Streams): Define a function zero-through-three that returns a stream which cycles
through the values 0, 1, 2, 3 every time it’s called, starting with 0 (Racket has a function
remainder that may be useful).

(define zero-through-three

 (letrec ([f (lambda (x)

 (cons (remainder x 4)

 (lambda () (f (+ x 1)))))])

 (lambda () (f 0))))

Q7 (Streams): Define a function zero-through-n that takes a number n and returns a
stream which cycles through the values 0, 1, 2, …, n every time it’s called, starting with 0. You
may assume n is non-negative.

(define (zero-through-n n)

 (letrec ([f (lambda (x)

 (cons (remainder x n)

 (lambda () (f (+ x 1)))))])

 (lambda () (f 0))))

