
CSE 341 | Section 6

Racket: Basics, Lists, and Delayed Evaluation

Q1 (Scope Review): Consider the following Racket code:

(define x 3)

(define f1

 (lambda (x)

 (let ([y (+ x 1)])

 (+ y x))))

(define x 3)

(define f2

 (let ([y (+ x 1)])

 (lambda (x)

 (+ y x))))

What is ​(f1 2) ​ bound to? ​5

What is ​(f2 2) ​ bound to? ​6

Q2 (Functions): Define a function named ​digit-sum ​ that accepts an integer ​n ​ and returns the
sum of its digits. For example, the call​ (digit-sum 341) ​ should return 8 (since 3 + 4 + 1 =
8). If passed a negative parameter, the function should return the negative sum of the digits. For
example, the call ​(digit-sum -341) ​ should return -8 (since -(3 + 4 + 1) = -8). You may
assume that only integers are passed as arguments. Use racket functions ​remainder ​ and
quotient ​.

(define (digit-sum n)

 (if (= n 0)

 0

 (+ (remainder n 10)

 (digit-sum (quotient n 10)))))

Q3 (Functions): Write a Racket function named star-string that accepts an integer argument n
and returns a string of stars (asterisks) 2n long (i.e., 2 to the nth power). Use the racket
string-append ​ function. For example:

Call Output Reason

(star-string 0) "*" 2​0​ = 1

(star-string 1) "**" 2​1​ = 2

(star-string 2) "****" 2​2​ = 4

(star-string 3) "********" 2​3​ = 8

(define (star-string n)

 (if (= n 0)

 "*"

 (let

 ([s (star-string (- n 1))])

 (string-append s s))))

Q4 (Lists): Define a function ​count-in-range ​ that takes a list of numbers and two numbers
lo ​ and​ hi ​ and returns the count of elements in the list that are between ​lo ​ and ​hi ​ (inclusive).

(define (count-in-range xs lo hi)

 (if (null? xs)

 0

 (let ([x (car xs)]

 [cnt (count-in-range (cdr xs) lo hi)])

 (if (and (>= x lo) (<= x hi))

 (+ 1 cnt)

 cnt))))

Test: (= 4 (count-in-range (list 1 2 3 4 5) 2 5))

Q5 (Lists): Define a function ​partition-parity ​ that takes a list as an argument and returns
a pair of lists such that the first list holds all even values of the argument and the second list
holds all odd (maintaining original order). Use racket function ​even? ​ or ​odd? ​.

(define (partition-parity xs)

 (if (null? xs)

 (cons null null)

 (let ([x (car xs)]

 [rest (partition-parity (cdr xs))])

 (if (even? x)

 (cons (cons x (car rest)) (cdr rest))

 (cons (car rest) (cons x (cdr rest)))))))

Q6 (Streams): Define a function ​zero-through-three ​ that returns a stream which cycles
through the values 0, 1, 2, 3 every time it’s called, starting with 0 (Racket has a function
remainder ​ that may be useful).

(define zero-through-three

 (letrec ([f (lambda (x)

 (cons (remainder x 4)

 (lambda () (f (+ x 1)))))])

 (lambda () (f 0))))

Q7 (Streams): Define a function ​zero-through-n ​that takes a number ​n​ and returns a
stream which cycles through the values 0, 1, 2, …,​ n ​ every time it’s called, starting with 0. You
may assume ​n ​ is non-negative.

(define (zero-through-n n)

 (letrec ([f (lambda (x)

 (cons (remainder x n)

 (lambda () (f (+ x 1)))))])

 (lambda () (f 0))))

