
CSE 341
Section 6

Racket Basics, Lists, and Delayed Evaluation



Learning Objectives

• Become familiar with the Racket IDE and REPL
• Review the basics, comparing with ML: variables, 

functions, conditions, functions
• Build and process lists in Racket using functions 

we’ve already seen in ML
• Know how (and when) to use delayed evaluation 

with thunks



Racket
Next two units will use the Racket language (not ML) and the 
DrRacket programming environment (not Emacs)

– Installation / basic usage instructions on course website

• Like ML, functional focus with imperative features
– Anonymous functions, closures, no return statement, etc.
– No pattern-matching

• No static type system
– Accepts more programs, but most errors do not occur 

until run-time
• Really minimalist syntax
• Advanced features like macros, modules, quoting/eval, 

continuations, contracts, …
– We’ll do only a couple of these



The Racket Guide/Reference

• Racket has amazingly good documentation; use it!
• The Racket Guide introduces and explains 

features of the language in detail
• The Racket Reference defines the core language 

and common libraries; good way to look up a 
particular function. (Right-clicking on a function 
name in DrRacket will give you a link to the 
relevant doc page.)



DrRacket Tips
• Hitting tab will add the appropriate amount of whitespace to the 

beginning of the line your cursor is on. You can also reindent all 
with cmd-i (find the command under the Racket tab).

• Mousing over a variable shows an arrow to where it’s defined

• Putting #; in front of a block enclosed in parentheses will 
comment the whole block out. You can also comment multiple 
lines with a command under the Racket tab

• At the top of the window, clicking where it says “(define …)” will 
give a list of the variables all your definitions are bound to.

• In the interaction window, alt-p will repeat entries from your 
history, like the up arrow at the command line. (Alt is bound to Esc 
for OSX)

• Instead of lambda, you can use cmd-\ to use a λ character



SML vs. Racket

#lang racket

(define x 3) 
(define y (+ x 2)) 

(define cube ; function
(lambda (x) 
(* x (* x x)))) 

(define pow ; recursive function
(lambda (x y) 
(if (= y 0)

1
(* x (pow x (- y 1))))))

val x = 3
val y = x + 2

fun cube x = x * x * x;

fun pow (x, y) =
if y = 0
then 1
else x * pow (x, y - 1)



Examples
(define (sum xs)
(if (null? xs)

0
(+ (car xs) (sum (cdr xs)))))

(define (my-append xs ys)
(if (null? xs)

ys
(cons (car xs) (my-append (cdr xs) ys))))

(define (my-map f xs)
(if (null? xs)

null
(cons (f (car xs)) (my-map f (cdr xs)))))



Parentheses Matter

You must break yourself of one habit for Racket: 
– Do not add/remove parens because you feel like it 

• Parens are never optional or meaningless!!!

– In most places (e) means call e with zero arguments

– So ((e)) means call e with zero arguments and call the 
result with zero arguments

Without static typing, often get hard-to-diagnose run-time 
errors



Review: What are the errors?
Correct: 

Treats 1 as a zero-argument function (run-time error):

Gives if 5 arguments (syntax error)

3 arguments to define (including (n)) (syntax error)

Treats n as a function, passing it * (run-time error)

(define (fact n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) (1)(* n (fact (- n 1)))))

(define (fact n)(if = n 0 1 (* n (fact (- n 1)))))

(define fact (n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) 1 (n * (fact (- n 1)))))



Scope
Consider the following Racket code:

What is (f1 2) bound to? 

What is (f2 2) bound to? 

(define x 3)
(define f1
(lambda (x)
(let ([y (+ x 1)])
(+ y x))))

(define x 3)
(define f2
(let ([y (+ x 1)])
(lambda (x)
(+ y x))))



Lists in Racket
Empty list: null
Cons constructor: cons
Access head of list: car 
Access tail of list: cdr
Check for empty: null?

Notes:
– Can also use (list e1 … en) for building lists

Examples:
(define list1 (cons 3 (cons 4 (cons 1 null))))
(define list2 (list 3 4 1))



SML vs. 
Racket

val empty = []

val list1 = [1,2,3]

val list2 = 1 :: 2 :: 3 :: []

val b1 = null empty

val h1 = hd list1

val t1 = tl list1

#lang racket

(define empty null) 

(define list1 (list 1 2 3)) 

(define list2 

(cons 1 (cons 2 (cons 3 null))) 

(define b1 (null? empty))

(define h1 (car list1))

(define t1 (cdr list1))



Practice with Lists

See worksheet Q4/5



Thunks:
Zero-argument functions which wrap around an 
expression to be evaluated when needed:

(lambda() e)

Delayed Evaluation with 
Thunks



Delay and Force: Review

Q: What do the following functions do?

Q: Where are any thunks used here?

(define (my-delay th)
(mcons #f th))

(define (my-force p)
(if (mcar p)

(mcdr p)
(begin (set-mcar! p #t)

(set-mcdr! p ((mcdr p)))
(mcdr p))))



Streams: Example

Q:
How would you get the second number in this 
stream and save it as a variable x?

(define nats
(letrec ([f (lambda (x) 

(cons x (lambda () (f (+ x 1)))))])
(lambda () (f 1))))



Streams
• A stream is an infinite sequence of values

– So cannot make a stream by making all the values
– Key idea: Use a thunk to delay creating most of the 

sequence
– Just a programming idiom

• A powerful concept for division of labor:
– Stream producer knows how to create any number of 

values
– Stream consumer decides how many values to ask for

• Some examples of streams you might (not) be familiar with:
– User actions (mouse clicks, etc.)
– UNIX pipes: cmd1 | cmd2 has cmd2 “pull” data from cmd1
– Output values from a sequential feedback circuit



Using Streams

We will represent streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:
'(next-answer . next-thunk)

So given a stream s, the client can get any number of elements
– First: car (s))
– Second: (car ((cdr (s))))
– Third: (car ((cdr ((cdr (s))))))
(Usually bind (cdr (s)) to a variable or pass to a recursive 
function)



Streams

• Functions which represent an infinite sequence of 
values

• When a stream s is evaluated, results in a pair 
with a value in (car s) and another stream in 
(cdr s)



Practice with Thunks and 
Streams

Select worksheet questions



Example using streams
This function returns how many stream elements it takes to find 
one for which tester does not return #f

– Happens to be written with a tail-recursive helper 
function

– (stream) generates the pair
– So recursively pass (cdr pr), the thunk for the rest of 

the infinite sequence

(define (number-until stream tester) 
(letrec ([f (lambda (stream ans) 

(let ([pr (stream)])
(if (tester (car pr))

ans
(f (cdr pr) (+ ans 1)))))])

(f stream 1)))


