
CSE 341 | Section 5

Currying
a) Write a function filter_by_example that takes a function f , a value x , and a list xs in
curried form. Upon applying the three arguments, the result of the function should be a new
list that has all of the values from the original list that return the same result when f is applied
to them as when f is applied to x .

b) Write a function same_size_as that takes a list and a list of lists in curried form and
returns all of the lists in the second parameter that have the same size as the given list. Use
filter_by_example in your answer.

c) Write a function count_o that takes a string and returns the number of occurrences of
the lowercase letter #”o” in the given string. Our solution uses List.filter and
String.explode. List.foldl is also possible.

d) Write a function silly_application that takes a list of strings and returns a new list of
strings of all the strings in the given list that have the same number of occurrences of the
letter o as “dogsarecool”. Use count_o and filter_by_example .

e) Write a function contains that has type ''a -> ''a list -> bool (notice the
currying) and takes a first argument value, a second argument list, and returns true if the
first argument is in the second argument. (Hint: use List.foldl)

f) Write a function filter_unique that takes a function, list of previous values, and an
input list of values. If applying the given function to an input value results in a value not

previously seen (not in the list of previous values), the input value should be added to the
result list, and the result of applying the function should be added to the previous values
list.

g) Write a function unique_sums that takes a list of lists of integers and returns a new list
that contains lists that have unique summations. Use filter_unique in your answer.

h) Write a function all_that_contain that has type ''a -> ''a list list ->
''a list list (notice the currying) which takes a value, and a list of lists, and returns
a new list of all of the original lists that contain the given value.

i) Write a function even_only that takes a list of lists of ints and returns a new list of lists of
ints that are the original lists with only even values. Use a val binding and some combination
of List.map and List.filter

j) Write a function even_only_not_empty that returns the same thing as even_only
except has no empty lists in its result. Our solution uses a fun binding, function composition,
and calls to List.filter and even_only

Modules

(a) Below on the left are various lines of code that belong in the signature and
module skeletons on the right. Your job is to discern which lines belong in
the RATIONAL signature and which belong in the Rational module. For the
sake of space, the full expression in the function bindings has been replaced
with a comment of (* function_name body *)

