CSE 341 | Section 5 (KEY)
Currying

a) fun filter by example f x =

List.filter (fn x' => f x = f

x")

b) fun same size as xs = filter by example List.length

XS

c) fun count o s

List.length (List.filter (fn x => x = #"0o") (String.explode
s))

fun count o s =

List.foldl (fn (x,acc) => if x = #"o" then acc + 1 else
acc)

0 (String.explode s))

d) val silly application = filter by example count o

"dogsarecool"

e) fun contains x

List.foldl (fn (x', acc) => acc orelse X' = Xx)
false

f) fun filter unique f prev xs

case Xs
of
(1 =>1[1 |
x':ixs' =>
let

Il
H
b

val result



in

if contains result prev

then filter unique f prev xs'

else x' :: filter unique f (result :: prev) xs'
end
g) fun unique sums xs = filter unique List.length []
XS
h) fun all that contain x = (List.filter (contains

i) val even only

List.map (List.filter (fn x => x mod 2 =
0))

j) fun even only not empty xs

List.filter (not o List.null) (even only

XSs)

Modules



signature RATIONAL =
sig
type rational
exception BadFrac

val make frac : int * int -> rational

val tosString @ rdatiicenal —> string

val add : rational * rational -> rational
val Whole : int -> rational

end

gtruetire Rational :» BATIONAL =
struet
type rational = int * int
exception BadFrac

fun tostring (x;y] = (* Lo string body *)
fun Whole i = (1,1)

fun make frac (x,y) = (* make frac body ¥*)
fun add ((a,b), (c,d)) = (* add body *)

end



