4/30/2020

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE 341
Section 5

HW?2 Debrief, Currying, Modules

Agenda

« HW2 Debrief
« Currying

« Modules

« Q&A

Homework 2 Recap

« If-then-else vs. case expression
If-then-else is prefered:
match x with
0 => “zero”
| _=> “not-zero”
Case statement is preferred:
if null xs
then “empty”
else if null (tl xs)
then “one elt”
else “more than one elt”

Homework 2 Recap

o Wildcards

Use wildcards when we don’t use the value in the
pattern

match arith with
Const x => Const 1 (* we don’t use x! *)
| Mult(x, y) => Const x (* we don’t use y! *)

Key Concepts Review

Currying

- Have a function take the first conceptual
argument and return another function that
takes the second conceptual argument and so
on.

Modules

- A powerful tool for enforcing abstraction and
safety
Keep type representation opaque to outside
client => guaranteed that invariants are
protected

Currying
Recall every ML function takes exactly one argument

Before Currying:

funsub (x, y)=x-y

X
sub x-y
y

With Currying:
funsubxy=x-y

X sub

Y Y




Currying

Currying is particularly convenient for creating similar functions with
iterators. Here is a curried version of a fold function for lists:

fun fold f =
(fn acc =>

(fn xs =>
case xs of
[1 => acc
1ixs' => fold f (f(acc,x)) xs'))

Now we could use this fold to define a function that sums a list
elements like this:

fun suml xs = fold (fn (x,y) => x+y) 0 xs

But that is unnecessarily complicated compared to just
using partial application:

val sum2 = fold (fn (x,y) => x+y) 0

4/30/2020

Currying

Let's practice! (a), (b), (e), (i) on Worksheet

7
Modules
+ Can group bindings into separate modules
Good for maintaining invariants by hiding implementation
details from client
structure MyModule = struct bindings end
Inside a module, can use earlier bindings as usual
+ Can have any kind of binding (val, datatype, exception, ...)
Outside a module, refer to earlier modules’ bindings via
ModuleName .bindingName
Just like List. foldl and Char. toLower; NOW you can
define your own modules
9
Modules
Let's practice! (a) on Worksheet
11

8
Modules
Remember: structure Foo :> BARIs allowed if
Foo provides:
+ every non-abstract type in BAR (as specified)
+ every abstract type in BAR (in some way)
+ every val-binding in BAR (can have more general
types)
+ every exception in BAR
Foo can also define things that are not defined in BAR!
10
Question Time
Feel free to ask questions about material,
review questions, etc.
12



