
4/30/2020

1

CSE 341
Section 5

HW2 Debrief, Currying, Modules

Agenda

● HW2 Debrief
● Currying
● Modules
● Q&A

Homework 2 Recap
● If-then-else vs. case expression

• If-then-else is prefered:
match x with

0 => “zero”
| _ => “not-zero”

• Case statement is preferred:
if null xs
then “empty”
else if null (tl xs)

then “one elt”
else “more than one elt”

Homework 2 Recap

● Wildcards
• Use wildcards when we don’t use the value in the

pattern
match arith with

Const x => Const 1 (* we don’t use x! *)
| Mult(x, y) => Const x (* we don’t use y! *)

match arith with
Const _ => Const 1

| Mult(x,_) => Const x

Key Concepts Review

• Currying
• Have a function take the first conceptual

argument and return another function that
takes the second conceptual argument and so
on.

• Modules
• A powerful tool for enforcing abstraction and

safety
• Keep type representation opaque to outside

client => guaranteed that invariants are
protected

Currying
Recall every ML function takes exactly one argument

1 2

3 4

5 6

4/30/2020

2

Currying
Currying is particularly convenient for creating similar functions with
iterators. Here is a curried version of a fold function for lists:

Now we could use this fold to define a function that sums a list
elements like this:

. fun sum1 xs = fold (fn (x,y) => x+y) 0 xs .

But that is unnecessarily complicated compared to just
using partial application:

. val sum2 = fold (fn (x,y) => x+y) 0 .

Currying

Let’s practice! (a), (b), (e), (i) on Worksheet

Modules
• Can group bindings into separate modules

• Good for maintaining invariants by hiding implementation

details from client

. structure MyModule = struct bindings end .

• Inside a module, can use earlier bindings as usual
• Can have any kind of binding (val, datatype, exception, ...)

• Outside a module, refer to earlier modules’ bindings via

. ModuleName.bindingName .

• Just like List.foldl and Char.toLower; now you can
define your own modules

Modules

Remember: structure Foo :> BAR is allowed if
Foo provides:
• every non-abstract type in BAR (as specified)
• every abstract type in BAR (in some way)
• every val-binding in BAR (can have more general

types)
• every exception in BAR
Foo can also define things that are not defined in BAR!

Modules

Let’s practice! (a) on Worksheet

Question Time

Feel free to ask questions about material,
review questions, etc.

7 8

9 10

11 12

