
CSE 341 | Section 4

Anonymous Functions/Unnecessary Function Wrapping

Q1: Rewrite the following functions as val bindings to anonymous functions:

1. fun double x = x *

2;

2. fun identity x =

x

3. ​fun apply_to_five f = f 5;

Q2: Rewrite the following expressions without unnecessary “wrapping”:

1. ​if e then true else false ​→

2. ​fn x => f x ​→

Polymorphic Datatypes

Q3: Consider the following datatype binding that represents a binary tree:

datatype ('a, 'b) tree = Leaf of 'a | Node of 'b * ('a, 'b) tree * ('a, 'b) tree

● What expressions could this datatype support, and what are their types? List at least 3
here:

● What expressions does this datatype ​not ​support, and what are their types? List at
least 3 here:

Higher Order Functions
Q4​: ​Consider the following code:

 fun fold l f a =

 case l of

 [] => a

 | h::t => f (fold t f a, h)

a.​ What is its type?

b.​ In what order does it process its elements?

Q5: Write the function definition for the following functions: (Hint: which of map, filter, and fold
could be useful here? Any previous function can be used?)

1. ​double_all ​which has type ​int list -> int list​. This takes an int list and returns an int
list whose elements are twice the original.

2. Write a function ​join ​with type ​‘a list list -> ‘a list ​using fold which returns the
concatenation of each element in its argument.

3. ​count_zeros ​which has type ​int list -> int. ​This takes an int list and returns the
number of times “0” appears.

4. Consider the following definitions (from HW1):
type date = int * int * int

fun day (d : date) = #1 d

fun month (d : date) = #2 d

fun year (d : date) = #3 d

Write a function ​number_in_month ​whose type is ​('a * ''b * 'c) list * ''b -> int​. This
takes a list of dates and a month and returns the number of dates in that month.

5. Write a function ​flat_map ​which has type ​('a -> 'b list) * 'a list -> 'b list​. This function
should take a function as its first argument which maps elements of the second
argument to lists, and then ​flat_map ​should return the concatenation of those
lists. (hint: does this sound familiar?)

