
CSE 341 | Section 4 (Key)
Anonymity, Polymorphism, and Higher Order Functions

Anonymous Functions/Unnecessary Function Wrapping

Q1: Re-write the following functions as val bindings to anonymous functions:

1. fun double x = x * 2;

val double = (fn x => x * 2);

2. fun identity x = x

val identity = (fn x => x);

3. fun apply_to_five f = f 5;

val apply_to_five = (fn x => x 5);

Q2: Re-write the following expressions without unnecessary “wrapping”:

1. if e then true else false → ​e

2. fn x => f x → ​f

Polymorphic Datatypes

Q3: Consider the following datatype binding that represents a binary tree:

datatype ('a, 'b) tree = Leaf of 'a | Node of 'b * ('a, 'b) tree * ('a, 'b) tree

● What expressions could this datatype support, and what are their types? List at least 3
here:

(string,’a) tree [i.e. a leaf with string. For example → Leaf“hi”]

(bool, string) tree [i.e. a branch with internal node values of bool and children
that leaves of type string. For example → Node(“a”, Leaf true, Leaf false)]

(string, string) tree [i.e. a branch with internal node values of bool and
children that leaves of type string. For example → Node(“a”, Leaf “hi”, Leaf
“bye”)]

...any type ‘a for leaves and any type ‘b for branch values! (as long as they
agree)

● What expressions does this datatype ​not ​support, and what are their types? List at least
3 here:

Essentially, any type in which either the leaves or branches do not agree. E.g.:

Node(“hi”, Leaf true, Leaf
“bye”)

Node(1, Leaf false,
Node(“2”, Leaf true, Leaf
true))

Higher Order
Functions

Q4:​ ​fun fold l f a =
 case l of

 [] => a

 | h::t => f (fold t f a, h)

a.​ What is its type?

fold : 'b list * ('a * 'b -> 'a) * 'a -> 'a

b.​ In what order does it process its elements? (In what order do we apply f function)

Back to front!

Q5: Write the function definition for the following functions: (Hint: which of map, filter, and fold
could be useful here? Any previous function can be used?)

1. double_all which has type ​fn : int list -> int list​. This takes an int list and returns an int
list whose elements are twice the
original.

fun double_all xs = map (fn x => x * 2) xs

2. Write a function join with type ​‘a list list -> ‘a list ​using foldr which returns the
concatenation of each element in its argument.

fun join xss = fold (fn (acc, x) => x @ acc) [] xss

or.... (closer to standard library)

fun join xss = foldr((fn (acc, x) => x @ acc), [], xss)
fun join xss = foldl((fn (acc, x) => acc @ x), [], xss)

 or…(realizing that op@ is equivalent to the fn)

 fun join xss = fold op@ [] xss;

3. count_zeros which has type ​fn : int list -> int. ​This takes an int list and returns the
number of times “0”
appears.

fun count_zeros xs = fold((fn (acc,x) => if x=0 then acc+1 else acc), 0, xs)
fun count_zeros xs = sum(map((fn (x) => if x=0 then 1 else 0), xs)) fun
count_zeros xs = length(filter((fn (x) => x=0), xs))

4. Consider the following definitions (from HW1):

type date = int * int * int
fun day (d : date) = #1 d
fun month (d : date) = #2
d fun year (d : date) = #3
d

Write a function number_in_month whose type is ​fn : ('a * ''b * 'c) list * ''b -> bool​. This
takes a list of dates and a month and returns the number of dates that are in the given
month. (hint: which of map, filter, and fold could be useful here?)

fun is_in_month((_,m,_), month) = (m = month);

fun number_in_month(dates, month)=
let

 ​fun check_date d = is_in_month(d, month)
in

length(List.filter check_date dates)
end

Or...

fun number_in_month(dates, month)
=

length(filter((fn (_,m,_) => m = month),
dates))

 Or…

fun number_in_month(dates,month) =

fold(fn (acc,(_,m,_)) => if m = month then
1 + acc else acc, 0, dates)

5. Write a function flat_map which has type ​fn : ('a -> 'b list) * 'a list -> 'b list​. This function
should take a function as its first argument which maps elements of the second
argument to lists, and then flat_map should return the concatenation of those lists. (hint:
does this sound familiar?)

fun flat_map (f, xs) =
case xs of

[] => [] | x::xs' => (f x) @ flat_map (f, xs')

Or…

fun flat_map (f,xs) = fold(op@, [],
map(f,xs))

