
CSE 341
Section 4

HW1 Debrief, Higher-Order Functions, Closures
Spring 2020

Learning Objectives

● HW1 de-brief (~5 minutes)

● Higher-Order Functions (~35 min)
○ Become familiar with anonymous functions
○ Understand higher order functions and their

expressiveness

● Currying and partial application (rest of section)
○ Identify the relationship between currying and partial

application

Homework 1 Recap

is_older was quite subtle.

(Switch to Emacs)

Homework 1 Recap

Think about what makes a date d1 earlier than
another date d2:

1. If the year of d1 is before the year of d2 (March 1,
1970 is older than Feb 6, 2010)

2. Or, if the years are equal, then if month of d1 is
earlier (March 1, 1970 is older than April 1, 1970)

3. Or, if both the year and month are equal, then if
the day is earlier (March 1, 1970 is older than
March 2, 1970)

Key Concepts Review

• Higher-order functions
• Pass functions around like any data
• Closures: functions capture references to their

environment
• Lexical scoping: variables are captured at time of

creation
• Higher-order function idioms:

• foldl, map, etc.
• Polymorphic functions

• Functions that are generic over the type of arguments

Polymorphic Datatypes

Q3: Consider the following datatype binding that
represents a binary tree:
datatype ('a, 'b) tree =

Leaf of 'a | Node of 'b * ('a, 'b) tree

* ('a, 'b) tree

What expressions could this datatype support, and
what are their types?

Anonymous Functions
An Anonymous Function
fn pattern => expression

• An expression that creates a new function with no name.
• Usually used as an argument to a higher-order function.
• Almost equivalent to the following:
let fun name pattern = expression in name end

What’s the difference? What can you do with one that you
can’t do with the other?
• The difference is that anonymous functions cannot be recursive!!!

Let’s practice! (Q1 and Q2 on Worksheet)

Unnecessary Function Wrapping

What's the difference between the following two expressions?

(fn xs => tl xs) vs. tl

STYLE POINTS!

• Other than style, these two expressions result in the exact same thing.
• However, one creates an unnecessary function to wrap tl.
• This is very similar to this style issue:
(if ex then true else false) vs. ex

Higher-Order Functions

Functions that are no different from any program
data.

An extremely powerful feature! The “defining
feature” of functional programming.*

* debatable

fold

• fold : 'b list * ('a * 'b -> 'a) * 'a -> 'a

– Returns a “thing” that is the accumulation of the first
argument applied to the third arguments elements stored in
the second argument.

– Processes the list in reverse order!
– Example:
fold([1,2,3], (fn (a,b) => a + b), 0) === 6

Higher-Order Functions

Worksheet Q4! (~5mins)

Higher-Order Functions

What is the type of fold?

In what order does fold process its elements?

Is there the one true type for a fold function?
Why/Why not?

Higher-Order Functions

● More practice (select problems of Q4 of
worksheet)

Higher-Order Functions

Let’s look at an association list representation of a
map and some operations (Emacs)

Association Lists

k1 v1 k2 v2 k3 v3 ...

Closure-Based Representation

• The function (map!) returned by add captures:
• the inserted key (k)
• the inserted value (v)
• the original map (m)

Closure-Based Representation

fn =>
...

k1

v1 m

fn =>
...

k2

v2 m’

fn =>
...

k3

v3 m’’

...

Does this look familiar?

Closure-Based Representation

fn =>
...

k1

v1 m

fn =>
...

k2

v2 m’

fn =>
...

k3

v3 m’’

...

k1 v1 k2 v2 k3 v3 ...

Benefits of this representation

• Remove is O(1)
• Map is O(1) (kinda!)

• Only ends up transforming values accessed
later (emacs)

• Although the result can be more expensive
computationally (why?)

