
CSE 341 Section 4 ​Common Higher Order Functions Reference Shee​t

map(f, xs) ​val map = fn : ​('a -> 'b)​ * ​'a list​ -> 'b list

fun map(f,xs) =

 case xs of

 [] => []

 | h::t => f h :: map(f,t)

Applies the given function f​ to all elements in the given list xs​ and returns the resulting list.

val double_length = fn x => 2 * size x; (* fn : string -> int *)
val xs = ["hello", "!", "!!!"]; (* string list *)
val result = map(double_length, xs); (* [10,2,6] : int list *)

flat_map(f, xs) ​val flat_map = fn : ​('a -> 'b list)​ * ​'a list​ -> 'b list

Similar to map​, but the argument function f​ returns a list. Then, instead of returning a list of lists ('b
list list​), “flattens” the list at the end into a 'b list​.

val repeat_length = fn x => let val len = size x in [len, len] end; (* fn : string -> int list *)
val xs = ["hello", "!", "!!!"]; (* string list *)
val result = flat_map(repeat_length, xs); (* [5,5,1,1,3,3] : int list *)

filter(f, xs) ​val filter = fn : ​('a -> bool)​ * ​'a list​ -> 'a list

fun filter(f,xs) =

 case xs of

 [] => []

 | h::t => if f h then h::filter(f,t) else filter(f,t)

Applies the given function f​ to all elements in the given list xs​, and only keeps (and returns as a list)
the elements that f​ returned true for.

val is_even = fn x => x mod 2 = 0; (* fn : int -> bool *)
val xs = [5, 2, 8]; (* int list *)
val result = filter(is_even, xs); (* [2,8] : int list *)

fold(f, acc, xs) ​val fold = fn : ​('a * 'b) -> 'a​ * ​'a​ * ​'b list​ -> 'a

fun fold(f,acc,xs) =

 case xs of

 [] => acc

 | h::t => fold(f, f(acc,h), t)

Accumulates an answer by repeatedly applying the given function f​ to each element in the list,
building up to a final result. acc​ can be thought of as the starting value. In other words, the call to
fold(f,acc,[x1,x2,x3,x4])​ computes f(f(f(f(acc,x1),x2),x3),x4)​.

val count_greater_than_3 = fn (acc, x) => if x > 3.0 then acc + 1 else acc; (* fn : int * real -> int *)
val xs = [5.0, 2.0, 8.0]; (* real list *)
val result = fold(count_greater_than_3 , 0, xs); (* 2 : int *)

Note: size​ is an SML library function that takes a string and returns the length of it (as an int)

