
CSE 341 | Section 3

Q1: datatypes and pattern-matching

Colors are often represented based on red, green, and blue values (RGB), where the value for each
of these three components is an integer between 0 and 255 (inclusive). The RGB value for Red is
(255, 0, 0), the RGB value for Green is (0, 255, 0) and the RGB value for Blue is (0, 0, 255). We can
represent other colors with a mix of RGB values. Suppose we have the following datatype defined to
represent a color conveniently as one of the three primary colors, or a custom color:

datatype color = Red | Green | Blue | RGB of (int * int * int);

Write a function invert_color that takes a color argument and returns its inverse as a new RGB
representation (as a color datatype), resulting from subtracting each original r, g, b value from
255. For example, the call invert_color(RED) should return the RGB value (0, 255, 255) and
invert_color(RGB(0, 25, 155)) should return the RGB value (255, 220, 100). Assume that if
the color argument was constructed with the RGB constructor, the three integers are between 0 and
255 (inclusive). Hint: use a case expression in your solution.

Q2:
The color datatype is an example of a "one-of" datatype as discussed in lecture/readings. One
alternative is to represent colors with a record:

{ color_name : string, r : int, g : int, b : int }

a. What is one advantage of using a datatype for our color representation?

b. What is an example where it would be more appropriate to represent a type as a record instead
of a "one-of" datatype?

Q3: More datatype and Pattern-matching examples
a. Consider the following type and datatype:
type cart = real * real
datatype shape = Circle of cart * real (* coordinates and radius *)

| Square of cart * real (* coordinates and side length *)
| Rectangle of cart * real * real (* coordinates and side lengths *)

Write a function area which takes a shape as an argument and returns its area (as a real value).

b. Now recall this datatype to represent expression trees from lecture:
datatype exp = Constant of int

| Negate of exp
| Add of exp * exp
| Multiply of exp * exp

Write a function const_not_under_add of type exp -> bool that returns true if and only if there
exists a Constant in the expression that is not a child of an Add expression. For example,
const_not_under_add(Constant 341) should return true, as should
const_not_under_add(Multiply(Constant 341, Add(Constant 0, Constant 1))).

Q4:
Consider the following code:

fun length l =
 case l of
 _::xs => 1 + length xs
 | [] => 0

Is it tail-recursive? Why/why not?

fun all_positive (accum, l) =
 case l of

 x::xs => all_positive (accum andalso x > 0, xs)
 | [] => accum

Is it tail-recursive? Why/why not?

Datatypes and Pattern-Matching (17au Midterm Question)

