
CSE 341
Section 3

HW1 Tips
Tail Recursion

Pattern-Matching



Agenda

● HW1 tips
○ Avoid reimplementation of functions

● Pattern-matching over expression trees

● A little tail recursion
○ What is and isn’t tail recursive?
○ How can we make functions tail recursive?

2



Homework 1 Check-In

Things to keep in mind:
● Easy to miss things when learning a new language!
● Test as you go & design your tests carefully
● Read the spec before, during, and after each 

problem. It’s worth the extra time!
○ Check for correctness and redundancy/style (and 

review the CSE 341 Style Guide before submitting!)
● Functional programming emphasizes code reuse

○ Avoid re-implementing functionality where 
possible

○ Will become even more important later with higher-
order function

3



Key Concepts Review

● Custom datatypes
○ all of (records), one of (variants)

● Pattern matching
○ Powerful way to break apart data

● Tail recursion
○ Space efficiency of loops with recursive 

functions

4



val-Pattern Matching

Remember our unit test?

Just a pattern match!
“Match the left hand side against the value ‘template’ 
true, binding any variables (there aren’t any!)”

(* Neat trick for creating hard-fail tests: *)

val true = ((4 div 4) = 1);

CSE 341: Programming Languages 5



Adventures in pattern matching

• Shape example
• Function-pattern syntax if we get to it

CSE 341: Programming Languages 6



Pattern Matching

● We can pattern match over datatypes
● Beware “non-exhaustive matching”

○ Pattern matching can avoid “empty list” 
exceptions!

● Most functions pattern match over a single 
argument
○ SML has special syntax for this common case!
○ Use is a matter of taste

● Let’s work through some examples!

7



Tail Recursion

What is it?

Briefly: if a function will immediately return 
after making a call, we can reuse the stack 
space of the current function.

8



Tail Recursion

Quickcheck! 
• Discuss the problems with your breakout 

rooms!

9



Tail Recursion

● Was length tail recursive?
● Was all_positive tail recursive?
● Why tail recursion?

10


